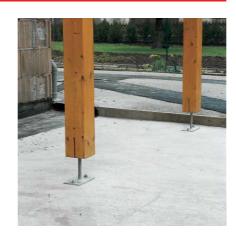


BEMESSUNGSTABELLEN FÜR WÜRTH HOLZVERBINDER VERBINDUNGSMITTEL


INHALTSVERZEICHNIS VERBINDUNGSMITTEL

Stal	bdübel		
	Stabdübel	Seite	3
	Bohrstabbdübel BSD	Seite	4
Scho	neibendübel	Seite	15
Kon	nstruktive Verbinder für ASSY Schrauben		
	Winkelscheiben	Seite	29
	FT Verbinder	Seite	32
Zub	behör Nägel / Schrauben		
	Kamm-/ Ankernagel	Seite	33
	Ankernägel 26°	Seite	33
	ASSY 3.0 Balkenschuhschraube	Seite	34
	DIN 571	Seite	36
	ASSY 3.0 Kombi	Seite	38
	ASSYplus VG Kombi	Seite	39
	ASSY 3.0 SK	Seite	40
	ASSY 3.0 SK Vollgewinde	Seite	42
	ASSY 3.0 SK A2	Seite	43
	ASSYplus VG	Seite	44
	W-SA TC Timber Connect	Seite	47
	HV Garnitur	Seite	49
	DIN 601	Seite	52

STABDÜBEL

Stabdübel mit Fase werden zur Verbindung von Stahlteilen in eingeschlitzten Holzquerschnitten wie beispielsweise Pfostenträger mit Schwert oder Holz-Holz Verbindungen verwendet.

- Mit Fase zum erleichterten Eintreiben
- Material: Stahl S235
- Oberfläche: blau passiviert (A2K); ≥ 7 µm
- Verwendung in der Nutzungsklasse 1 und 2

Leistungsnachweis

CE Kennzeichnung gemäß EN 14592

Durch-	Länge	Werk-	Werkstoff-	Ober-	Fließmoment	ArtNr.	VE
messer		stoff	bezeichnung	fläche			
8 mm	65 mm	Stahl	S235	Verzinkt	24,1 Nm	0681 008 065	100
8 mm	90 mm	Stahl	S235	Verzinkt	24,1 Nm	0681 008 090	100
8 mm	115 mm	Stahl	S235	Verzinkt	24,1 Nm	0681 008 115	100
8 mm	115 mm	Stahl	S235	Verzinkt	24,1 Nm	0681 008 115	100
10 mm	100 mm	Stahl	S235	Verzinkt	43 Nm	0681 010 100	100
10 mm	120 mm	Stahl	S235	Verzinkt	43 Nm	0681 010 120	100
10 mm	140 mm	Stahl	S235	Verzinkt	43 Nm	0681 010 140	100
12 mm	65 mm	Stahl	S235	Verzinkt	69,1 Nm	0681 012 065	100
12 mm	80 mm	Stahl	S235	Verzinkt	69,1 Nm	0681 012 080	100
12 mm	90 mm	Stahl	S235	Verzinkt	69,1 Nm	0681 012 090	100
12 mm	100 mm	Stahl	S235	Verzinkt	69,1 Nm	0681 012 100	100
12 mm	115 mm	Stahl	S235	Verzinkt	69,1 Nm	0681 012 115	100
12 mm	120 mm	Stahl	S235	Verzinkt	69,1 Nm	0681 012 120	100
12 mm	140 mm	Stahl	S235	Verzinkt	69,1 Nm	0681 012 140	100
12 mm	160 mm	Stahl	S235	Verzinkt	69,1 Nm	0681 012 160	50
12 mm	180 mm	Stahl	S235	Verzinkt	69,1 Nm	0681 012 180	50
12 mm	200 mm	Stahl	S235	Verzinkt	69,1 Nm	0681 012 200	50

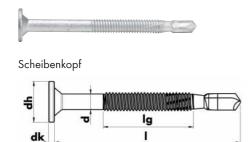
Anwendungsgebiet

Verbindung von innenliegenden Stahl-Holz oder Holz-Holz Anschlüssen von z.B. Pfostenträgern, Knotenpunkten, Zugstabanschlüssen oder Balkenträgern.

Hinweis

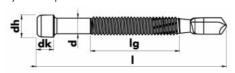
Stabdübel bündig zur Holzoberfläche einbauen.

Die Stärke des innenliegenden Stahlblechs bei Stahlblech-Holz-Verbindungen sollte mindestens 3 mm betragen, da ab dieser Stärke die Mindestrandabstande ausschließlich von den Randabständen im Holzbauteil bestimmt werden.


Anleitung

Der Durchmesser der Holzbohrung muss dem Durchmesser des Stabdübels entsprechen.

Der Durchmesser der Metallbohrung darf maximal 1 mm größer (NAD) als der Durchmesser des Stabdübels sein.



BOHRSTABDÜBEL BSD

Zylinderkopf

Innenantrieb	AW40
Durchmesser (d)	6,93 mm
Spitzenform	Bohrspitze
Werkstoff	Stahl gehärtet
Bohrspitzenlänge	15 mm
Oberfläche	Zink-Lamelle silber
Fließmoment	43,5 Nm
Zulassung	EN 14592

Kopfform	Kopfdurch- messer (dh)	Kopf- höhe (dk)	Länge (I)	Gewinde- länge (lg)	Produktgewicht (per Stück)	ArtNr.	VE
Scheibenkopf	18 mm	2,5 mm	73 mm	31 mm	23,464 g	5394 216 073	50
Scheibenkopf	18 mm	2,5 mm	93 mm	40 mm	29,604 g	5394 216 093	50
Scheibenkopf	18 mm	2,5 mm	113 mm	50 mm	36 g	5394 216 113	50
Scheibenkopf	18 mm	2,5 mm	133 mm	60 mm	41,08 g	5394 216 133	50
Scheibenkopf	18 mm	2,5 mm	153 mm	70 mm	46,79 g	5394 216 153	50
Scheibenkopf	18 mm	2,5 mm	1 <i>7</i> 3 mm	80 mm	53,41 g	5394 216 173	50
Scheibenkopf	18 mm	2,5 mm	193 mm	90 mm	59,96 g	5394 216 193	50
Scheibenkopf	18 mm	2,5 mm	213 mm	100 mm	64 g	5394 216 213	50
Scheibenkopf	18 mm	2,5 mm	233 mm	110 mm	70,72 g	5394 216 233	50
Zylinderkopf	10 mm	7,5 mm	73 mm	31 mm	20,404 g	5394 226 073	50
Zylinderkopf	10 mm	7,5 mm	93 mm	40 mm	27,124 g	5394 226 093	50
Zylinderkopf	10 mm	7,5 mm	113 mm	50 mm	31,784 g	5394 226 113	50
Zylinderkopf	10 mm	7,5 mm	133 mm	60 mm	37,92 g	5394 226 133	50
Zylinderkopf	10 mm	7,5 mm	153 mm	70 mm	43,59 g	5394 226 153	50
Zylinderkopf	10 mm	7,5 mm	1 <i>7</i> 3 mm	80 mm	49,27 g	5394 226 173	50
Zylinderkopf	10 mm	7,5 mm	193 mm	90 mm	55,26 g	5394 226 193	50
Zylinderkopf	10 mm	7,5 mm	213 mm	100 mm	61,18 g	5394 226 213	50
Zylinderkopf	10 mm	7,5 mm	233 mm	110 mm	67,14 g	5394 226 233	50

Ergänzende Produkte	ArtNr.
Bohrschrauber BS 13-SEC POWER	0702 315 1
Bit AW® AW40	0614 514 0
Bit AW® AW40	0614 574 0
1/4 Zoll Bithalter magnetisch	0614 176 638
Spiralbohrer HSS Pilot WN Typ RN	0627 006 260

ORSY-lagerfähig

Eindrehender Stabdübel mit zwangsschuberzeugendem UNC-Gewinde für Stahl oder Aluminium Schlitzblechverbindungen. Mit hoher Korrosionsbeständigkeit durch Zink-Lamellen-Beschichtung.

- Direktes Einschrauben in Aluminium-Strangpressprofile der Stärke 6mm ohne Vorbohren.
- Schnelles setzen der Stabdübel in Stahl und Aluminium bei einer Vorbohrung von 6mm
- Leichtes kraftschonendes Einschrauben durch integrierten Zwangsvorschub
- Hohe Tragfähigkeit und hohes Fließmoment durch gehärtete Stahlqualität

Anwendungsgebiet

Stabdübel zur Befestigung von Schlitzblech-Holz Verbindungen aus Stahl oder Aluminium.

Anleitung

Direkte Verschraubung bzw. setzten des Bohrstabdübels BSD bei Verwendung von Aluminium-Strangpressprofilen. Bei Schlitzblechverbindungen aus Stahl oder frei gestaltbaren Aluminiumblechen ist mit einem Durchmesser von 6mm durch das Holz und das gesetzte Metallschlitzblech vorzubohren.

Bei mehrschnittigen Verbindungen und Verwendung von Hölzern mit einer Rohdichte von über 350 kg/m³ ist zur Vermeidung einer Querzugüberschreitung des Holzträgers während der Montage eine Schraubzwinge rechtwinklig zum Schlitzblech zu setzen.

Hinweis

Es sind die Randbedingungen der EN 14592:2008+A1:2012 und des EC5 (EN 1995-1-1:2004 + AC:2006 + A1:2008) zu beachten bzw. anzuwenden.

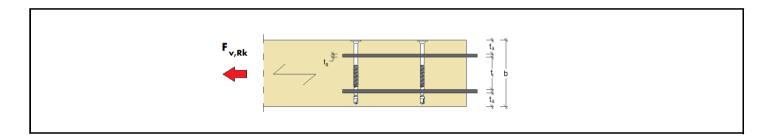
Leistungsnachweis

EN 14592

LEGENDE

t; Mindest Mittelholzbreite

t Mindest-Seitenholzdicke


Bleche Anzahl der Bleche

b_{netto} Nettoquerschnittsbreite des Holzbauteils abzüglich der Schlitze

b Querschnittsbreite des Holzbauteils

F_{v,Rk} charakteristische Tragfähigkkeit eine Bohrstabdübel BSD auf Abscheren

Bemessungswert der Tragfähigkeit eines Stabdübels: $F_{v,Rd} = F_{v,Rk} \times k_{mod} / 1,3$

Berechnungsgrundlagen

Die Bemessung von Stahlblech-Holz-Verbindungen mit Bohrstabdübeln erfolgt nach EN 1995-1-1 Abschnitt 8.6.

Kennwerte Bohrstabdübel: d = 6,9 mm, $M_{v,Rk} = 43,5$ Nmm

Die Stabdübel sind mit deren Nenndurchmesser vorzubohren und einseitig oberflächenbündig unter 90° zur Faserrichtung einzuschrauben.

Voraussetzungen für die Verwendung der tabellierten Werte

Stahlblech-Holz-Verbindung mit innenliegenden Stahlblechen

Stahlblech: Festigkeit mind. S235, Mindestblechdicke 3 mm für ausreichende Lochleibungstragfähigkeit des Stahlblechs mit Randabständen $e1 \ge 3 \times d0$ und $e2 \ge 1,5 \times d0$

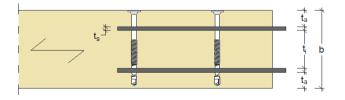
Der Winkel α zwischen Kraft und Faser beträgt 0° oder 90°. Für andere Winkel sind die angagebenen Tragfähigkeiten nicht gültig.

Die Stabdübel sind senkrecht zur Faserrichung anzuordnen.

Die Stabdübel sind einseitig oberflächenbündig einzuschrauben.

Die angegebenen Dicken der außen und innenliegenden Holzbauteile (ta und ti) sind einzuhalten.

Die angegebenen Tragfähigkeiten gelten für Nadelhölzer mit einer charakeristische Rohdichte ρ_k von 350 kg/m³.


Verbindungen mit Stabdübeln sollten mindestens 2 Bohrstabdübel enthalten. Bei Verbindungen mit einem Bohrstabdübel darf die Tragfähigkeit nur zur Hälfte angesetzt werden.

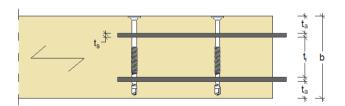
Die Mindestabstände nach EN 1995-1-1 Tabelle 8.5 sind einzuhalten.

Tabelle 1: Tragfähigkeit auf Abscheren je Stabdübel für Anschlüsse mit 1, 2 und 3 Blechen mit maximaler Schlitzdicke ts = 6 mm

L	Stabdübel	Bleche	L	α = 0 °			α = 90 °		
b	d x l	Біеспе	b _{netto}	t _a	ti	F _{v,Rk}	ta	ti	F _{v,Rk}
mm	mm	Stk.	mm	mm	mm	kN	mm	mm	kN
		1	74	37	-	8,49	37	-	6,78
80	6,9 x 73	2	68	≤ 21	≥ 26	11,2	≤ 26	≥ 16	7,74
		3	62	≤ 21	≥ 10	10,1	≤ 26	≥ 10	6,98
		1	94	47	=	9,33	47	-	<i>7</i> ,19
100	6,9 x 93	2	88	≤ 21	≥ 46	14,9	≤ 26	≥ 36	10,3
		3	82	≤ 21	≥ 20	13,8	≤ 26	≥ 15	9,51
		1	114	57	-	10,4	57	-	<i>7</i> ,81
120	6,9 x 113	2	108	20	68	18,6	12 ≥ t _a ≤ 26	56 ≤ t _i ≤ 84	12,8
		3	102	≤ 21	≥ 30	17,5	≤ 26	≥ 25	12,1
	6,9 x 133	1	134	67	-	11,6	67	-	8,54
140		2	128	29	70	21,0	24	80	15,3
		3	122	≤ 21	≥ 40	21,2	≤ 26	≥ 35	14,6
		1	154	77	-	12,7	77	-	9,35
160	6,9 x 153	2	148	38	72	21,6	31	86	1 <i>7</i> ,2
		3	142	≤ 21	≥ 50	24,9	≤ 26	≥ 45	1 <i>7</i> ,1
		1	174	87	-	13,0	87	-	10,2
180	6,9 x 1 <i>7</i> 3	2	168	48	72	22,5	41	86	1 <i>7,7</i>
		3	162	$11 \le t_{\alpha} \le 21$	$60 \le t_i \le 70$	28,6	≤ 26	≥ 55	19, <i>7</i>
		1	194	97	-	13,0	97	-	10,8
200	6,9 x 193	2	188	58	72	23,5	51	53	18,2
		3	182	21	70	32,3	≤ 26	≥ 65	22,2
		1	214	107	-	13,0	107	-	10,8
220	6,9 x 213	2	208	69	70	24,7	61	86	18,9
		3	202	30	<i>7</i> 1	34,2	16 ≥ t _a ≤ 26	75 ≤ t _i ≤ 85	24,7
		1	234	117	-	13,0	11 <i>7</i>	-	10,8
240	6,9 x 233	2	228	<i>7</i> 8	72	25,8	71	86	19,7
		3	222	40	<i>7</i> 1	34,8	26	85	27,3

Die angegebenen Tragfähigkeiten gelten für Nadelholz C24 (ρ_k = 350 kg/m³). Für andere Festigkeitsklassen dürfen die Tragfähigkeiten mit den Faktoren in der folgenden Tabelle multipliziert werden.

Tabelle 4 : Umrechnungsfaktoren f $_{\rm r}$ für Rohdichten $\rho_{\rm k}$ > 350 kg/m³


Festigkeitsklasse	GL24c	C30	GL24h	GL28c, GL30c	C35, GL32c	GL28h	GL30h	GL32h
Rohdichte in kg/m³	365	380	385	390	400	425	430	440
f _r	1,02	1,04	1,05	1,06	1,07	1,10	1,11	1,12

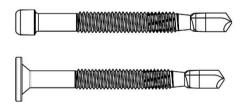
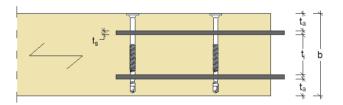

Es sind die im Abschnitt Legende geltenden Randparameter anzusetzen.

Tabelle 2: Tragfähigkeit auf Abscheren je Stabdübel für Anschlüsse mit 1, 2 und 3 Blechen mit maximaler Schlitzdicke ts = 8 mm

L	Stabdübel	DIl	L	α = 0°			α = 90 °		
b	d x l	Bleche	b _{netto}	t _a	ti	$F_{v,Rk}$	ta	ti	F _{v,Rk}
mm	mm	Stk.	mm	mm	mm	kN	mm	mm	kN
		1	72	36	-	8,43	36	-	6,75
80	6,9 x 73	2	64	≤ 21	≥ 22	10,5	≤ 26	≥ 12	7,23
		3	56	≤ 21	≥ 7	9,03	≤ 26	≥ 2	6,22
		1	92	46	-	9,23	46	-	7,14
100	6,9 x 93	2	84	≤ 21	≥ 42	14,2	≤ 26	≥ 32	9,77
		3	<i>7</i> 6	≤ 21	≥ 17	12,7	≤ 26	≥ 12	8,75
		1	112	56	-	10,3	56	-	7,74
120	6,9 x 113	2	104	$17 \le t_a \le 22$	$60 \le t_i \le 70$	1 <i>7</i> ,9	≤ 26	≥ 52	12,3
		3	96	≤ 21	≥ 27	16,4	≤ 26	≥ 22	11,3
	6,9 x 133	1	132	66	-	11,5	66	-	8,46
140		2	124	27	70	20,7	$20 \le t_a \le 26$	$72 \le t_i \le 84$	14,8
		3	116	≤ 21	≥ 37	20,1	≤ 26	≥ 32	13,8
	6,9 x 153	1	152	76	-	12 <i>,</i> 7	76	-	9,27
160		2	144	36	72	21,5	29	86	16,9
		3	136	≤ 21	≥ 47	23,8	≤ 26	≥ 42	16,4
		1	172	86	-	13,0	86	-	10,1
180	6,9 x 1 <i>7</i> 3	2	164	46	72	22,3	39	86	17,6
		3	156	≤ 21	≥ 57	27,5		18,9	
		1	192	96	-	13,0	96	-	10,8
200	6,9 x 193	2	184	56	72	23,3	49	86	18,1
		3	176	$18 \le t_{\alpha} \le 21$	$67 \le t_i \le 70$	31,2	≤ 26	≥ 62	21,4
		1	212	106	-	13,0		-	10,8
220	6,9 x 213	2	204	67	70	24,5		86	18 <i>,7</i>
		3	196	27	71	33,8	$13 \le t_a \le 26$	$72 \le t_i \le 85$	24,0
		1	232	116	-	13,0		-	10,8
240	6,9 x 233	2	224	76	72	25,7	26	12	19,5
		3	216	37	<i>7</i> 1	34,5	$23 \le t_0 \le 26$	$82 \le t_i \le 85$	26,5

Die angegebenen Tragfähigkeiten gelten für Nadelholz C24 (ρ_k = 350 kg/m³). Für andere Festigkeitsklassen dürfen die Tragfähigkeiten mit den Faktoren in der folgenden Tabelle multipliziert werden.

Tabelle 4 : Umrechnungsfaktoren f $_{\rm r}$ für Rohdichten $\rho_{\rm k}$ > 350 kg/m³


Festigkeitsklasse	GL24c	C30	GL24h	GL28c, GL30c	C35, GL32c	GL28h	GL30h	GL32h
Rohdichte in kg/m³	365	380	385	390	400	425	430	440
f _r	1,02	1,04	1,05	1,06	1,07	1,10	1,11	1,12

Es sind die im Abschnitt Legende geltenden Randparameter anzusetzen.

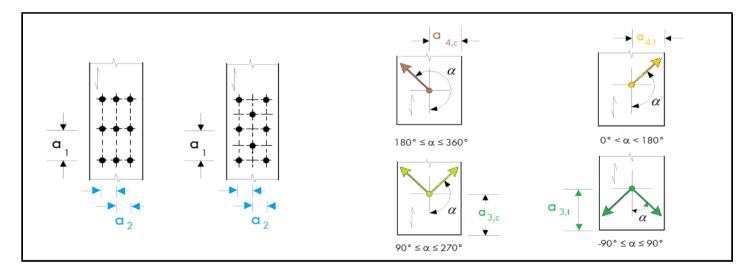
Tabelle 3: Tragfähigkeit auf Abscheren je Stabdübel für Anschlüsse mit 1, 2 und 3 Blechen mit maximaler Schlitzdicke ts = 10 mm

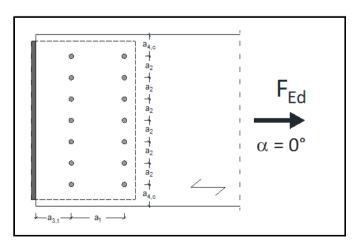
L	Stabdübel	Dia da	L	α = 0°			α = 90 °		
b	d x l	Bleche	b _{netto}	t _a	ti	F _{v,Rk}	t _a	ti	F _{v,Rk}
mm	mm	Stk.	mm	mm	mm	kN	mm	mm	kN
		1	70	35	-	8,37	35	-	6,73
80	6,9 x 73	2	60	≤ 21	≥ 18	9,77	≤ 26	≥ 8	6,72
		3	50	≤ 21	≥ 4	7,93	≤ 25	≥ 0	5,45
		1	90	45	-	9,14	45	-	7,09
100	6,9 x 93	2	80	≤ 21	≥ 38	13,5	≤ 26	≥ 28	9,26
		3	70	≤ 21	≥ 14	11,6	≤ 26	≥ 9	7,99
		1	110	55	-	10,2	55	-	7,67
120	6,9 x 113	2	100	$1.5 \le t_a \le 21$	$58 \le t_i \le 70$	1 <i>7</i> ,1	≤ 26	≥ 48	11,8
		3	90	≤ 21	≥ 24	15,3	≤ 26	≥ 19	10,5
	6,9 x 133	1	130	65	-	11,3	65	-	8,39
140		2	120	25	70	20,3	$18 \le t_{\alpha} \le 26$	$68 \le t_i \le 84$	14,3
		3	110	≤ 21	≥ 34	19,0	≤ 26	≥ 29	13,1
	6,9 x 153	1	150	75	-	12,6	75	-	9,18
160		2	140	34	72	21,3	27	86	16,7
		3	130	≤ 21	≥ 44	22,7	≤ 26	≥ 39	15,6
		1	170	85	-	13,0	85	-	10,0
180	6,9 x 1 <i>7</i> 3	2	160	44	72	22,1	37	86	17,6
		3	150	≤ 21	≥ 54	26,4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18,1	
		1	190	95	-	13,0	95	-	10,7
200	6,9 x 193	2	180	54	72	23,1	47	86	18,0
		3	170	$1.5 \le t_{\alpha} \le 2.1$	$64 \le t_i \le 70$	30,1		≥ 59	20,7
		1	210	105	-	13,0		-	10,8
220	6,9 x 213	2	200	65	70	24,2		86	18,6
		3	190	24	71	33,2	≤ 26	≥ 69	23,2
		1	230	115	-	13,0		-	10,8
240	6,9 x 233	2	220	74	72	25,5	26	12	19,3
		3	210	34	<i>7</i> 1	34,4	$20 \le t_a \le 26$	$79 \le t_i \le 85$	25,7

Die angegebenen Tragfähigkeiten gelten für Nadelholz C24 (ρ_k = 350 kg/m³). Für andere Festigkeitsklassen dürfen die Tragfähigkeiten mit den Faktoren in der folgenden Tabelle multipliziert werden.

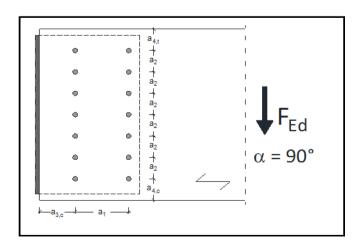
Tabelle 4 : Umrechnungsfaktoren f $_{\rm r}$ für Rohdichten $\rho_{\rm k}$ > 350 kg/m³

Festigkeitsklasse	GL24c	C30	GL24h	GL28c, GL30c	C35, GL32c	GL28h	GL30h	GL32h
Rohdichte in kg/m³	365	380	385	390	400	425	430	440
f_r	1,02	1,04	1,05	1,06	1,07	1,10	1,11	1,12


Es sind die im Abschnitt Legende geltenden Randparameter anzusetzen.


Tabelle 5: Mindestabstände nach EN 1995-1-1 Tabelle 8.5 in Abhängigkeit des Kraft-Faser-Winkels lpha

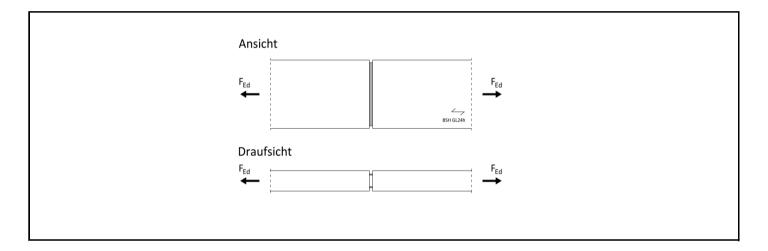
α	a ₁	\mathfrak{a}_2	a _{3,t}	a _{3,c}	a _{4,t}	a _{4,c}
0	35			40	21	
10	35			40	21	
20	34			40	21	
30	33			40	21	
40	32	21	80	52	23	21
50	30	21	30	62	25	21
60	28			70	26	
70	26			76	27	
80	24			79	28	
90	21			80	28	


Definition der Mindestabstände nach EN 1995-1-1

Mindestabstände für Kraft-Faserwinkel α = 0°

Mindestabstände für Kraft-Faserwinkel α = 90°

Beispielrechnung:


System: Zugstoß mit Bohrstabdübel

Bauteile: b/h = 120mm / 400mm Nadelholz, Festigkeitsklasse Brettschichtholz BSH GL24h

 $(\rho_k = 385 \text{kg/m}^3)$

Schlitzblech: Stahlblech t = 6 mm, S235

Bemessungskraft: $F_{v,Ed} = 320kN \text{ (NKL} = 1, KLED = kurz, bzw. kmod = 0,9)}$

Passender Bohrstabdübel: Tabelle 1 ⇒ Bauteilbreite 120 mm ⇒ Bohrstabdübel 6,9x113mm

maxi	m <u>aler Schlitz</u>	dicke ts	= 6 mm						
L	Stabdübel	Bleche		$\alpha = 0^{\circ}$			α = 90 °		
b mm	d x l mm	Stk.	mm	t _a mm	t _i mm	F _{v,Rk} kN	t _a mm	t _i mm	F _{v,Rk} kN
		1	74	37	-	8,49	37	-	6,78
80	6,9 x 73	2	68	≤ 21	≥ 26	11,2	≤ 26	≥ 16	7,74
		3	62	≤ 21	≥ 10	10,1	≤ 26	≥ 10	6,98
		- 1	94	47	-	9,33	47	-	7,19
100	6,9 x 93	2	88	≤ 21	≥ 46	14,9	≤ 26	≥ 36	10,3
		3	82	≤ 21	≥ 20	13,8	≤ 26	≥ 15	9,51
		- 1	114	57	-	10,4	57	-	7,81
120	6,9 x 113	2	108	20	68	18,6	12 ≥ t _a ≤ 26	56 ≤ t _i ≤ 84	12,8
		3	102	≤ 21	≥ 30	17,5	≤ 26	≥ 25	12,1

Tragfähigkeit 1 Bohrstabdübel: Verbindung mit 2 Blechen gewählt

Bemessungswert mit Verstärkung: Tabelle 1 \Rightarrow F_{v,Rk} = 18,6 kN für ρ_k = 350 kg/m³ und Kraft-Faser-Winkel α = 0°

Tabelle 1: Tragfähigkeit auf Abscheren je Stabdübel für Anschlüsse mit 1, 2 und 3 Blechen mit

maxi	maler Schlitz	dicke ts	= 6 mm							
b	Stabdübel	DIb-	b _{netto}	α = 0°			α = 90°			
D	d x l	Bleche		t _a	ti	F _{v,Rk}	t _a	ti	F _{v,Rk}	
mm	mm	Stk.	mm	mm	mm	kN	mm	mm	kN	
		1	74	37	-	8,49	37	-	6,78	
80	6,9 x 73	2	68	≤ 21	≥ 26	11,2	≤ 26	≥ 16	7,74	
		3	62	≤ 21	≥ 10	10,1	10,1 ≤ 26 ≥ 1	≥ 10	6,98	
		1	94	47	-	9,33	47	-	<i>7</i> ,19	
100	6,9 x 93	2	88	≤ 21	≥ 46	14,9	≤ 26	≥ 36	10,3	
		3	82	≤ 21	≥ 20	13,8	≤ 26	≥ 15	9,51	
		1	114	57	-	10,4	57	-	<i>7</i> ,81	
120	6,9 x 113	2	108	20	68	18,6	12 ≥ t _a ≤ 26	56 ≤ t _i ≤ 84	12,8	
		3	102	≤ 21	≥ 30	17,5	≤ 26	≥ 25	12,1	

Umrechnung der tabellierten Tragfähigkeit für GL24h:

Tabelle 4 \Rightarrow Umrechnungsfaktor 1,05 für BSH GL24h mit ρ_k = 385 kg/m³

$$F_{v.Rk} = 1.05 \times 18.6 = 19.5 \text{ kN}$$

$$F_{v,Rd} = k_{mod} / \gamma_M \times F_{v,Rk} = 0.9 / 1.3 \times 19.5 = 13.5 \text{ kN}$$

Tabelle 4: Umrechnungsfaktoren f, für Rohdichten $\rho_k > 350 \text{ kg/m}^3$

Festigkeitsklasse	GL24c	C30	GL24h	GL28c, GL30c	C25, GL
Rohdichte in kg/m³	365	380	385	390	400
i,	1,02	1,04	1,05	1,06	1,07

Geometrie und Mindestabstände: Tabelle 1 ⇒

Tabelle 1 ⇒ Seitenholzdicke

 $t_a = 20 \text{ mm}$

Mittelholzdicke

 $t_{i} = 68 \text{ mm}$

Tabelle 1: Tragfähigkeit auf Abscheren je Stabdübel für Anschlüsse mit 1, 2 und 3 Blechen mit

maxi	maximaler Schlitzdicke ts = 6 mm											
ь	Stabdübel	Bleche	L	α = 0 °			α = 90°					
В	d x l	Dietile	b _{netto}	t _a	ti	F _{v,Rk}	t _a	ti	F _{v,Rk}			
mm	mm	Stk.	mm	mm	mm	kN	mm	mm	kN			
		1	74	3 <i>7</i>	-	8,49	37	-	6,78			
80	6,9 x 73	2	68	≤ 21	≥ 26	11,2	≤ 26	≥ 16	7,74			
		3	62	≤21	≥ 10	10,1	≤ 26	37 - ≤ 26 ≥ 16 ≤ 26 ≥ 10 47 - ≤ 26 ≥ 36	6,98			
		1	94	47	-	9,33	47	-	7,19			
100	$6,9 \times 93$	2	88	≤ 21	≥ 46	14,9	≤ 26	≥ 36	10,3			
		3	82	≤ 21	≥ 20	13,8	≤ 26	≥ 15	9,51			
		1	114	57		10,4	57		<i>7,</i> 81			
120	6,9 x 113	2	108	20	68	18,6	12 ≥ t _a ≤ 26	$56 \le t_i \le 84$	12,8			
		3	102	≤ 21	≥ 30	1 <i>7</i> ,5	≤ 26	≥ 25	12,1			

Tabelle 5 ⇒

 $a_1 = 35 \text{ mm}$

 $a_2 = 21 \text{ mm}$

 $a_{3,t} = 80 \text{ mm}$

Tabelle 5: Mindestabstände nach EN 1995-1-1 Tabelle 8.5 in Abhängigkeit des Kraft-Faser-Winkels

α	a ₁	a ₂	a _{3,t}	a _{3,c}	a _{4,t}	a 4,c
0	35	21	80	40	21	
10	35			40	21	
20	34			40	21	
30	33			40	21	
40	32	21	80	52	23	21
50	30	21	80	62	25	21
60	28			70	26	
70	26			76	27	
80	24			79	28	
90	21			80	28	

Erforderliche Anzahl Bohrstabdübel:

$$n_{ef,erf} = F_{Ed} / F_{v,Rd} = 320 / 13,5 = 23,7$$

Maximale Anzahl Bohrstabdübel über Querschnittshöhe:

$$n_{90,max}$$
= (h - 2 × $a_{4,c}$) / a_2 + 1 = (400 - 2 × 21) / 21 +1 = 18
 \Rightarrow 2 Stabdübelreihen (n_0 = 2) in Faserrichtung ausreichend

Effektive Anzahl Stabdübel in Faserrichtung:

Tabelle 6
$$\Rightarrow$$
 Variante 1 $n_{0,ef,0^{\circ}} = 1,61$ für $a_1 = 50$ mm und $\alpha = 0^{\circ}$
Variante 2 $n_{0,ef,0^{\circ}} = 2,00$ für $a_1 = 120$ mm und $\alpha = 0^{\circ}$

Tabelle 6: Effektive Stabdübelanzahl $n_{0,ef,0}$ * in Abhängigkeit des Abstands a_1 und der Anzahl der Stabdübel n_0 für α = 0 °

a ₁ in m	m	30	40	50	60	80	100	120
	2	1,42	1,52	1,61	1,69	1,81	1,92	2,00
	3	2,04	2,20	2,32	2,43	2,61	2,76	2,89
	4	2,65	2,85	3,01	3,15	3,38	3,58	3,74
	5	3,24	3,48	3,68	3,85	4,14	4,37	4,58
ê	6	3,81	4,10	4,33	4,54	4,87	5,15	5,39
	7	4,38	4,71	4,98	5,21	5,60	5,92	6,20
	8	4,94	5,31	5,61	5,88	6,31	6,68	6,99
	9	5,49	5,90	6,24	6,53	7,02	7,42	7,77
	10	6,04	6,49	6,86	7,18	7,72	8,16	8,54

Erforderlich Anzahl Bohrstabdübel rechtwinklig zur Faserrichtung:

Variante 1
$$n_{90,erf} = n_{ef,erf} / n_{0,ef,0^{\circ}} = 23.7 / 1,61 = 14.7$$

$$\Rightarrow gewählt n_{90} = 15$$

$$\Rightarrow gewählt a_{4,c} = 32 \text{ mm}$$

$$\Rightarrow a_2 = (h - 2 \times a_{4,c}) / (n_{90} - 1) = 24 \text{ mm}$$

erforderliche I $n_{ges} = 2 \times n_0 \times n_{90} = 2 \times 2 \times 15 = 60$ Stk.

Variante 2
$$n_{90,erf} = n_{ef,erf} / n_{0,ef,0^{\circ}} = 23.7 / 2.00 = 11.9$$

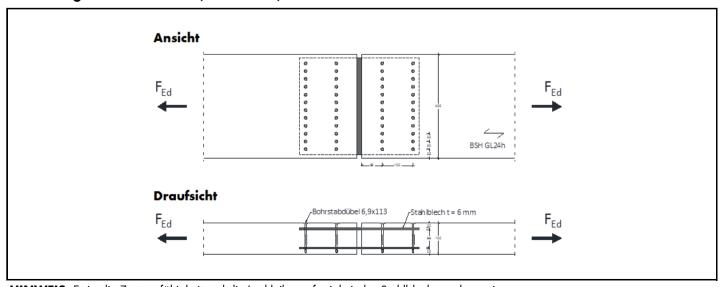
$$\Rightarrow gewählt \ n_{90} = 12$$

$$\Rightarrow gewählt \ \alpha_{4,c} = 35 \ mm$$

$$\Rightarrow \alpha_2 = (h - 2 \times \alpha_{4,c}) / (n_{90} - 1) = 30 \ mm$$

erforderliche I
$$n_{ges} = 2 \times n_0 \times n_{90} = 2 \times 2 \times 12 = 48$$
 Stk.

Effektive Anzahl Bohrstabdübel:


Variante 2
$$n_{ef} = n_{90} \times n_{0.ef.0^{\circ}} = 12 \times 2,00 = 24,0 \ge n_{ef.erf} = 23,7$$

Nachweis der Zugspannung im Nettoquerschnitt:

Tabelle 1
$$\Rightarrow$$
 b_{netto} = 108 mm
$$\sigma_{t,0,d} = F_{Ed} / (b_{netto} \times h) = 320 \times 10^3 / (108 \times 400) = 7,41 \text{ N/mm}^2$$

$$f_{t,0,d} = k_{mod} / \gamma_M \times f_{t,0,k} = 0,9 / 1,3 \times 16,5 = 11,4 \text{ N/mm}^2 > \sigma_{t,0,d}$$

Tabelle 1: Tragfähigkeit auf Abscheren je Stabdübel für Anschlüsse mit 1, 2 und 3 Blechen mit maximaler Schlitzdicke ts = 6 mm Stabdübel $\alpha = 0^{\circ}$ Bleche d x l F_{v,Rk} kN F_{v,Rk} kN Stk mm mm mm mm mm mm mm 74 8.49 6.78 80 6,9 x 73 ≥ 26 11.2 ≥ 16 68 ≤ 21 ≤ 26 10,1 6,98 62 ≤21 ≥ 10 ≤ 26 ≥ 10 94 9,33 7,19 6,9 x 93 100 ≥ 46 14,9 ≤ 26 82 ≤ 21 ≥ 20 13.8 ≤ 26 ≥ 1.5 9.51 114 10.4 120 6,9 x 113 12 ≥ t_o ≤ 26 56 ≤ t_i ≤ 84 108 20 68 18.6 12.8

Zeichnung des Anschlusses (Variante 2)

HINWEIS: Es ist die Zugtragfähigkeit und die Lochleibungsfestigkeit des Stahlblechs nachzuweisen. HINWEIS: Es handelt sich hier um Planungshilfen. Die Werte sind durch autorisierte Personen im Projektfall zu bemessen.

Bei mehreren Stabdübeln in Faserrichtung hintereinander muss die Tragfähigkeit des Anschlusses mit der die effektive Anzahl der Stabdübel berechnet werden: $n_{ef} = n_{90} \times n_{0,ef,\alpha}$. Die effektive Anzahl der Stabdübel ist abhängig von der Anzahl n_0 der Stabdübel hintereinander in Faserrichtung , vom Achsabstand a 1 sowie vom Winkel α zwischen Kraft und Faserrichtung.

Bei Kraft-Faserwinkeln $\alpha = 0^{\circ}$ gilt: nef = n_{90} x $n_{0.ef.0^{\circ}}$.

Bei Kraft-Faserwinkeln α = 90° gilt: $n_{0,ef,90^{\circ}}$ = n_0 und damit nef = n_{90} x n_0 .

Bei Kraft-Faserwinkeln $\alpha \neq 90^{\circ}$ darf die effektive Anzahl der Stabdübel in Faserrichtung hintereinander mit folgender Gleichung berechnet werden: $n_{0,ef,\alpha} = n_{0,ef,0^{\circ}} \times (90^{\circ} - \alpha) / 90^{\circ} + n_{0} \times \alpha / 90^{\circ}$

Wir das Spalten des Holzes durch eine Verstärkung rechtwinklig zur Faserrichtung verhindert, z. B. durch ASSY plus VG Schrauben, darf mit $n_{ef} = n_{90} \times n_0$ unabhängig vom Kraft-Faser-Winkel gerechnet werden.

Tabelle 6: Effektive Stabdübelanzahl $n_{0,ef,0^\circ}$ in Abhängigkeit des Abstands a_1 und der Anzahl der Stabdübel n_0 für $\alpha=0^\circ$

a ₁ in mn	n	30	40	50	60	80	100	120
	2	1,42	1,52	1,61	1,69	1,81	1,92	2,00
	3	2,04	2,20	2,32	2,43	2,61	2,76	2,89
	4	2,65	2,85	3,01	3,15	3,38	3,58	3,74
	5	3,24	3,48	3,68	3,85	4,14	4,37	4,58
2	6	3,81	4,10	4,33	4,54	4,87	5,15	5,39
	7	4,38	4,71	4,98	5,21	5,60	5,92	6,20
	8	4,94	5,31	5,61	5,88	6,31	6,68	6,99
	9	5,49	5,90	6,24	6,53	7,02	7,42	7,77
	10	6,04	6,49	6,86	7,18	7,72	8,16	8,54

SCHEIBENDÜBEL MIT ZÄHNEN ZWEISEITIG TYP C1

ArtNr.	0451 021 50	0451 021 62	0451 021 75
VE	200	200	100
Nenndurchmesser	50 mm	62 mm	75 mm
Lochdurchmesser	17 mm	21 mm	26 mm
Тур	C1	C1	C1
Werkstoff	Stahlblech	Stahlblech	Stahlblech
Oberfläche	Verzinkt	Verzinkt	Verzinkt

Außendurchmesser 62 mm ist ORSY-lagerfähig

Anleitung

Die Scheibendübel mit Zähnen zweiseitig Typ C1 werden mit Passbolzen und Mutter befestigt. Alternativ können ASSY Holzbauschrauben verwendet werden. Scheibendübel des Typ C1 können für Hirnholzanschlüsse verwendet werden. Geeignete Verbindungsmittel sind Bolzen und Unterlagscheiben, ASSY 3.0 Kombi Schraube mit Unterlagscheibe und ASSY 3.0 SK.

Montage

- 1. Anbringung der Bohrung für den Bolzen mit Mutter in beiden Holzbauteilen. Die Bohrdurchmesser für die Bolzen im Holz dürfen max. 1 mm größer als die Nenndurchmesser der Bolzen sein.
- 2. Positionierung der zweiseitigen Scheibendübel. Dabei muss bei zweiseitigen Scheibendübeln kein Kontakt zwischen Dübel und Bolzen bestehen. Fixierung des Scheibendübels mit Hilfe von Nägel (D=3 mm) durch vorgegebene Nagellöcher. Ein Eintreiben durch direkte Schlagwirkung auf die Zähne ist unzulässig.
- 3. Eintreiben der Scheibendübel über das Anziehen der Bolzen bzw. Bolzendrehmoment oder hydraulisches Einpresswerkzeug. Alternativ können spezielle Einschaggeräte verwendet werden.
- 4. Bei einem Schwund der Holzquerschnitte ist ein Nachziehen der Bolzen vorzunehmen.

Zweiseitiger Scheibendübel (Typ C1) werden für Holz-Holz-Verbindungen (Nadelholz) in Kombination mit Bolzen oder Holzschrauben zur Aufnahme auftretender Scherkräfte verwendet. Die tragend anzusetzenden Bolzen oder Schrauben nehmen die Klemm- und Zugkräfte in der Bolzenachse auf.

- Gemäß DIN EN 912:2011-09
- 2 Nagellöcher D=3,5 mm
- Material: Stahl St 1203 bzw. DC 01
 + C390 gemäß DIN EN 10139
- Oberfläche: Sedzimir verzinkt
- Verwendung in der Nutzungsklasse 1 und 2

Leistungsnachweis

CE Kennzeichnung gemäß DIN EN 912

Anwendungsgebiet

Herstellung von zweischnittigen scherbelasteten Holz-Holz-Verbindungen aus Nadelholz z.B. Überblattungen, Rahmenecken, Kehlbalken, Koppelpfetten und Hirnholzanschlüsse.

Hinweis

Die Querdruckbeanspruchung in den Pressflächen sollte bei Vollholz nicht höher als 2,5 N/mm² und bei Bettschichtholz nicht höher als 3 N/mm² betragen. Alternativ können die zweischnittige Anschlüsse auch mit ASSY plus Vollgewindeschrauben in Kombination mit Scheibenkopfschrauben hergestellt werden.

SCHEIBENDÜBEL MIT ZÄHNEN EINSEITIG TYP C2

ArtNr.	0451 011 50	0451 011 62	0451 011 75
VE	300	100	100
Nenndurchmesser	50 mm	62 mm	75 mm
Lochdurchmesser	12,4 mm	12,4 mm	16,4 mm
Тур	C2	C2	C2
Werkstoff	Stahlblech	Stahlblech	Stahlblech
Oberfläche	Verzinkt	Verzinkt	Verzinkt

Außendurchmesser 62 mm ist ORSY-lagerfähig.

Anwendungsgebiet

Herstellung von zweischnittigen scherbelasteten Metall-Holz- und Holz-Holz-Verbindungen aus Nadelholz z.B. Überblattungen, Rahmenecken und Kehlbalken

Hinweis

Die Querdruckbeanspruchung in den Pressflächen sollte bei Vollholz nicht höher als 2,5 N/mm² und bei Bettschichtholz nicht höher als 3 N/mm² betragen.

Leistungsnachweis

CE Kennzeichnung gemäß DIN EN 912 beantragt.

Einseitiger Scheibendübel (Typ C2) werden für Metall-Holz- oder Holz-Holz-Verbindungen (Nadelholz) in Kombination mit Bolzen oder Holzschrauben zur Aufnahme auftretender Scherkräfte verwendet. Die tragend anzusetzenden Bolzen oder Schrauben nehmen die Klemm- und Zugkräfte in der Bolzenachse auf.

- Gemäß DIN EN 912:2011-09
- 2 Nagellöcher D=3,5 mm
- Material: Stahl St 1203 bzw. DC 01
 + C390 gemäß DIN EN 10139
- Oberfläche: Sedzimir verzinkt
- Verwendung in der Nutzungsklasse 1 und 2

Anleitung

Die Scheibendübel einseitig Typ C2 werden mit Passbolzen und Mutter befestigt. Alternativ können ASSY Holzbauschrauben verwendet werden. Geeignete Verbindungsmittel: Bolzen mit Unterlagsscheiben und ASSY 3.0 Kombi Schraube.

Montage

- 1. Anbringung der Bohrung für den Bolzen mit Mutter im Holzbauteil. Die Bohrdurchmesser für die Bolzen im Holz dürfen max. 1 mm größer als die Nenndurchmesser der Bolzen sein. Der Bolzen muss an der Metalllasche und am Scheibendübel anliegen.
- 2. Positionierung des einseitigen Scheibendübels im Holzteil. Die Fixierung des Scheibendübels kann durch Nagellöcher erfolgen. Ein Eintreiben durch direkte Schlagwirkung auf die Zähne ist unzulässig.
- 3. Eintreiben der Scheibendübel über das Anziehen der Bolzen bzw. Bolzendrehmoment oder hydraulisches Einpresswerkzeug. Alternativ können spezielle Einschlaggeräte verwendet werden.
- 4. Bei einem Schwund der Holzquerschnitte ist ein Nachziehen der Bolzen vorzunehmen.

SCHEIBENDÜBEL MIT ZÄHNEN ZWEISEITIG TYP C10

ArtNr.	0451 041 50	0451 041 65	0451 041 80	0451 041 95
VE	50	50	25	25
Nenndurchmesser	50 mm	65 mm	80 mm	95 mm
Lochdurchmesser	30,4 mm	35 mm	50 mm	66 mm
Тур	C10	C10	C10	C10
Werkstoff	Temperguss	Temperguss	Temperguss	Temperguss
Oberfläche	Verzinkt	Verzinkt	Verzinkt	Verzinkt

ORSY-lagerfähig

Anleitung

Die Scheibendübel mit Zähnen zweiseitig Typ C10 werden mit Passbolzen und Mutter befestigt. Alternativ können ASSY Holzbauschrauben verwendet werden. Scheibendübel des Typ C10 können für Hirnholzanschlüsse verwendet werden. Geeignete Verbindungsmittel: Bolzen mit Unterlagscheiben und ASSY 3.0 Kombi Schraube mit Unterlagscheibe und ASSY 3.0 SK (<95 mm).

Montage

- 1. Anbringung der Bohrung für den Bolzen mit Mutter in beiden Holzbauteilen. Die Bohrdurchmesser für die Bolzen im Holz dürfen max. 1 mm größer als die Nenndurchmesser der Bolzen sein.
- 2. Positionierung des zweiseitigen Scheibendübels im Holzteil. Dabei muss bei zweiseitigen Scheibendübeln kein Kontakt zwischen Dübel und Bolzen bestehen. Zur Vermeidung eines Spaltes zwischen den Bauteilen können diese eingelassen werden. Ein Eintreiben durch eine direkte Schlagwirkung auf die Zähne ist unzulässig.
- 3. Eintreiben der Scheibendübel über das Anziehen der Bolzen bzw. Bolzendrehmoment oder hydraulisches Einpresswerkzeug. Alternativ können spezielle Einschlaggeräte verwendet werden.
- 4. Bei einem Schwund der Holzquerschnitte ist ein Nachziehen der Bolzen vorzunehmen.

Zweiseitiger Scheibendübel (Typ C10) werden für Holz-Holz-Verbindungen (Nadelholz) in Kombination mit Bolzen oder Holzschrauben zur Aufnahme auftretender Scherkräfte verwendet. Die tragend anzusetzenden Bolzen oder Schrauben nehmen die Klemm- und Zugkräfte in der Bolzenachse auf.

- Gemäß DIN EN 912:2011-09
- Material: Temperguß EN-GJMB-350-10 nach DIN EN 1562
- Oberfläche: Galvanisch verzinkt A4K
- Verwendung in der Nutzungsklasse 1 und 2

Leistungsnachweis

CE Kennzeichnung gemäß EN 14545:2008

Anwendungsgebiet

Herstellung von zweischnittigen scherbelasteten Holz -Holz-Verbindungen aus Nadelholz z.B. Überblattungen, Rahmenecken, Kehlbalken, Koppelpfetten und Hirnholzanschlüsse.

Hinweis

Die Querdruckbeanspruchung in den Pressflächen sollte bei Vollholz nicht höher als 2,5 N/mm2 und bei Bettschichtholz nicht höher als 3 N/mm2 betragen. Alternativ können zweischnittige Anschlüsse auch mit ASSY plus Vollgewindeschrauben in Kombination mit Scheibenkopfschrauben hergestellt werden.

SCHEIBENDÜBEL MIT ZÄHNEN EINSEITIG TYP C1 1

ArtNr.	0451 031 50	0451 031 65	0451 031 80	0451 031 95
VE	50	50	25	25
Nenndurchmesser	50 mm	65 mm	80 mm	95 mm
Lochdurchmesser	12,5 mm	16,5 mm	20,5 mm	24,5 mm
Тур	C11	C11	C11	C11
Werkstoff	Temperguss	Temperguss	Temperguss	Temperguss
Oberfläche	Verzinkt	Verzinkt	Verzinkt	Verzinkt

Außendurchmesser 80 und 95 mm sind ORSY-lagerfähig.

Anwendungsgebiet

Herstellung von zweischnittigen scherbelasteten Metall-Holz und Holz-Holzverbindungen aus Nadelholz z.B. Überblattungen, Rahmenecken und Kehlbalken.

Hinweis

Die Querdruckbeanspruchung in den Pressflächen sollte bei Vollholz nicht höher als 2,5 N/mm2 und bei Bettschichtholz nicht höher als 3 N/mm2 betragen.

Leistungsnachweis

CE-Kennzeichnung gemäß EN 14545:2008

Einseitiger Scheibendübel (Typ C11) werden für Metall-Holz-oder Holz-Holz-Verbindungen (Nadelholz) in Kombination mit Bolzen oder Holzschrauben zur Aufnahme auftretender Scherkräfte verwendet. Die tragend anzusetzenden Bolzen oder Schrauben nehmen die Klemmund Zugkräfte in der Bolzenachse auf.

- Gemäß DIN EN 912:2011-09
- Material: Temperguß EN-GJMB-350-10 nach DIN EN 1562
- Oberfläche: Galvanisch verzinkt, A4K
- Verwendung in der Nutzungsklasse 1 und 2

Anleitung

Die Scheibendübel mit Zähnen einseitig Typ C11 werden mit Passbolzen und Mutter befestigt. Geeignete Verbindungsmittel sind Bolzen mit Unterlagscheiben.

Montage

- 1. Anbringung der Bohrung für den Bolzen mit Mutter im Holzbauteil. Die Bohrdurchmesser für die Bolzen im Holz dürfen max. 1 mm größer als die Nenndurchmesser der Bolzen sein. Der Bolzen muss an der Metalllasche und am Scheibendübel anliegen.
- 2. Positionierung des einseitigen Scheibendübels im Holzteil. Zur Vermeidung eines Spaltes zwischen den Bauteilen können diese eingelassen werden. Ein Eintreiben durch direkte Schlagwirkung auf die Zähne ist unzulässig.
- 3. Eintreiben der Scheibendübel über das Anziehen der Bolzen bzw. Bolzendrehmoment oder hydraulisches Einpresswerkzeug. Alternativ können spezielle Einschlaggeräte verwendet werden.
- 4. Bei einem Schwund der Holzquerschnitte ist ein Nachziehen der Bolzen vorzunehmen.

BEMESSUNGSHILFEN FÜR SCHEIBENDÜBEL TRAGFÄHIGKEITEN

S1 Charakteristische Scheibendübeltragfähigkeit, Typ C (Bulldog, Geka) nach DIN EN 1995-1-1 8.10

_	ArtNr.	Dübel	Loch	Höhe	Dicke	Einpress-	Fehl-	Bolzen	Mindesthol	zdicke	Tragfähig-
		Ø	Ø			tiefe	fläche	Ø	Seitenholz	Mittelholz	keit
		d _c	d ₁	h _c	t	h _e	$\Delta \mathbf{A}$	d	t _{1,req}	t _{2,req}	F _{v,Rk} 1)
		mm	mm	mm	mm	mm	mm²	mm	mm	mm	kN
yp C1, :	zweiseitig mit 2	Zähnen							L		
	0451 021 50	50	1 <i>7</i>	13	1	6	170	12	24 (18*)	30	6,36
	0451 021 62	62	21	16	1,2	7,4	300	12	24 (22*)	37	8,79
MA	0451 021 75	75	26	19,5	1,25	9,1	420	16	27	46	11,69
		95	33	24	1,35	11,3	670	16	34	57	16,67
		117	48	30	1,5	14,3	1000	20	43	71	22,78
yp C2,	einseitig mit Zä	ihnen							<u> </u>	· · ·	
LAA .	0451 011 50	50	12,4	6,6	1	5,6	170	12	24 (17*)	28	6,36
0.3	0451 011 62	62	12,4	8,7	1,2	7,5	300	12	24 (23*)	38	8,79
	0451 011 <i>7</i> 5	75	16,4	10,4	1,25	9,2	420	16	27	46	11,69
		95	16,4	12,7	1,35	11,4	670	16	34	57	16,67
		117	20,4	16	1,5	14,5	1000	20	44	<i>7</i> 3	22,78
yp C10	, zweiseitig mit	Dornen	ı								
	0451 041 50	50	30,5	27	3	12	460	12	36	60	8,84
	0451 041 65	65	35,5	27	3	12	590	16	36	60	13,1
	0451 041 80	80	49,5	27	3	12	750	20	36	60	17,89
	0451 041 95	95	65,5	27	3	12	900	24	36	60	23,15
		115	85,5	27	3	12	1040	24	36	60	30,83
yp C11,	, einseitig mit D	ornen									
	0451 031 50	50	12,5	15	3	12	540	12	36	60	8,84
	0451 031 65	65	16,5	15	3	12	710	16	36	60	13,1
0110	0451 031 80	80	20,5	15	3	12	870	20	36	60	17,89
	0451 031 95	95	24,5	15	3	12	1070	24	36	60	23,15
	raafähiakeit ie Dübel	115	24,5	15	3	12	1240	24	36	60	30,83

¹⁾ Abschertragfähigkeit je Dübel und Scherfuge

Hinweise:

- Die angegebenen Tragfähigkeiten wurden nach DIN EN 1995-1-1 berechnet und gelten für eine charakteristische Rohdichte von 350 kg/m³ (Festigkeitsklasse C24).
- Die Tragfähigkeit der Dübel ist unabhängig vom Kraft-Faser-Winkel.
- Die Tragfähigkeit einer Verbindung mit Dübeln vom Typ C setzt sich zusammen aus der Tragfähigkeit des Dübel und der Tragfähigkeit des Bolzens:

$$F_{v,gesamt,Rk} = F_{v,D\ddot{u}bel,Rk} + F_{v,Bolzen,Rk}$$

- Bei geringeren Seitenholzdicken muss im Bereich von 2,25 h_e ≤ t₁ < 3 he die Dübeltragfähigkeit im Verhältnis t₁/(3 h_e) abgemindert werden
- Bei geringeren Mittelholzdicken muss im Bereich von 3,75 $h_e \le t_1 < 5$ h_e die Dübeltragfähigkeit im Verhältnis $t_1/(5$ $h_e)$ abgemindert werden.
- Bei Rohdichten ≠ 350 kg/m³ muss die Dübeltragfähigkeit F_{v,Rk} mit ρ_k/350 multipliziert werden. Maximal darf eine Rohdichte von 525 kg/m³ angesetzt werden.
- Bei beanspruchten Hirnholzenden m it 30° \leq a \leq 30° muss die Dübeltragfähigkeit $F_{v,Rk}$ mit dem Faktor k_2 multipiziert werden wenn der Mindestabstand $a_{3,t}$ nicht eingehalten wird.

$$k_{2} = \begin{cases} \frac{1}{a_{3,t}} & \text{mit } a_{3,t} = \max\left\{1,1 \text{ d}_{c}; 7 \text{ d}_{Bolzen}; 80 \text{ mm}\right\} \text{ für Typen C1 und C2} \\ \frac{1}{2,0 \text{ d}_{c}} & \text{mit } a_{3,t} = \max\left\{1,5 \text{ d}_{c}; 7 \text{ d}_{Bolzen}; 80 \text{ mm}\right\} \text{ für Typen C10 und C11} \end{cases}$$

- Bemessungswert der Tragfähigkeit: $F_{v,Rd} = k_{mod} \times F_{v,rk} / \gamma_M$ mit $\gamma_M = 1,3$.
- Bei Verbindungen mit mehreren Verbindungseinheiten aus Dübeln und Bolzen in Faserrichtung hintereinander ist die wirksame Anzahl n_{ef} nach DIN EN 1995-1-1 8.9 (12) zu ermitteln.

^{*} rechnerische Mindestholzdicke

BEMESSUNGSHILFEN FÜR SCHEIBENDÜBEL TRAGFÄHIGKEITEN

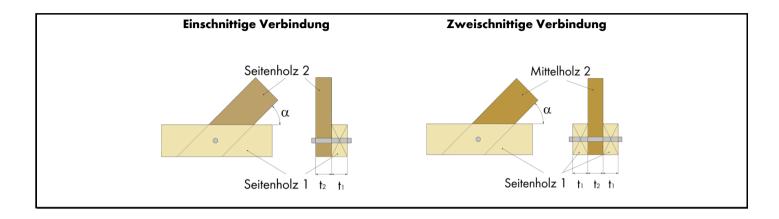
52 Charakteristische Schertragfähigkeit von Verbindungen mit Bolzen 4.6 nach DIN EN 1995-1-1 8.5. Bei der Verwendung mit Scheibendübel beträgt der notwendige Mindestdurchmesser des Bolzen (z.B. DIN 601 Garnituren 4.6) 12mm

Winkel zwischen den	Mindestholzdicken	Mindestholzdicken										
Bauteilen	Seitenholz 1	Seitenholz 2	Mittelholz	Bolzen und Scherfläche								
	(1- v. 2-schnittig)	(1-schnittig)	(2-schnittig)									
γ ¹⁾	t _{1,req}	t _{2,req}	t _{2,req}	F _{v,Rk} ²⁾								
•	mm	mm	mm	kN								
d = 6 mm mit U-Scheibe	e nach EN ISO 7094, A	ußendurchmesser 22n	ım									
0	35	35	29	2,53								
15	35	35	29	2,51								
30	37	34	28	2,46								
45	39	34	27	2,4								
60	41	34	27	2,34								
75	43	33	26	2,3								
90	43	33	26	2,29								
d = 8 mm mit U-Scheibe	nach EN ISO 7094 , A	ußendurchmesser 28r	nm									
0	44	44	37	4,2								
15	45	44	36	4,17								
30	47	44	36	4,08								
45	50	43	35	3,97								
60	53	43	34	3,87								
75	55	42	33	3,81								
90	56	42	33	3,78								
d = 10 mm mit U-Scheib	pe nach EN ISO 7094 ,	Außendurchmesser 34	lmm .									
0	53	53	44	6,21								
15	54	53	44	6,16								
30	57	53	43	6,02								
45	61	52	42	5,85								
60	65	52	41	5,7								
75	67	51	40	5,59								
90	68	51	40	5,55								
d = 12 mm mit U-Scheib	e nach DIN 1052 ode	r EN ISO 7094 , Außen	durchmesser 44mm									
0	62	62	52	8,53								
15	64	62	51	8,45								
30	67	62	50	8,26								
45	72	61	49	8,01								
60	76	60	47	7,79								
75	79	60	46	7,63								
90	80	60	46	7,58								

BEMESSUNGSHILFEN FÜR SCHEIBENDÜBEL TRAGFÄHIGKEITEN

52 Charakteristische Schertragfähigkeit von Verbindungen mit Bolzen 4.6 nach DIN EN 1995-1-1 8.5. Bei der Verwendung mit Scheibendübel beträgt der notwendige Mindestdurchmesser des Bolzen (z.B. DIN 601 Garnituren 4.6) 12mm

Winkel zwischen den	Mindestholzdicken		Tragfähigkeiten je			
Bauteilen	Seitenholz 1	Seitenholz 2	Mittelholz	Bolzen und Scherfläche		
	(1- u. 2-schnittig)	(1-schnittig)	(2-schnittig)			
γ1)	t _{1,req}	t _{2,req}	t _{2,req}	F _{v,Rk} ²⁾		
۰	mm	mm	mm	kN		
d = 16 mm mit U-Scheib	e nach DIN 1052 oder EN	N ISO 7094 , Außendurch	nmesser 56mm			
0	80	80	67	13,98		
15	82	80	66	13,84		
30	87	79	64	13,49		
45	94	78	62	13,05		
60	100	77	60	12,65		
75	104	77	59	12,38		
90	106	76	59	12,29		
d = 20 mm mit U-Scheib	e nach DIN 1052 oder EN	N ISO 7094 , Außendurch	nmesser 72mm			
0	99	99	82	20,39		
15	101	98	81	20,17		
30	108	97	79	19,61		
45	117	96	76	18,91		
60	125	94	73	18,28		
75	131	94	72	17,86		
90	133	93	71	17,71		
d = 24 mm mit U-Scheib	e nach DIN 1052 oder EN	N ISO 7094 , Außendurch	nmesser 92mm	•		
0	117	117	97	27,59		
15	120	116	96	27,27		
30	129	115	93	26,44		
45	140	113	89	25,43		
60	151	112	86	24,52		
75	158	111	84	23,91		
90	161	110	83	23,7		


- Winkel zwischen den Bauteilen 1 und 2. Die Beanspruchung im Seitenholz 2 bzw. Mittelholz wirkt parallel zur Faserrichtung (α = 0°).
- Charakteristische Abschertragfähigkeit je Verbindungsmittel und Scherläche inkl. Einhängeefekt
- Die angegebenen Tragfähigkeiten wurden nach nach DIN EN 1995-1-1 für Vollholz mit ρ_k = 350 kg/m³ sowie Bolzen 4.6 berechnet. Alle Bauteile müssen derselben Festigkeitsklasse zugeordnet sein
- Die charakterischen Abschertragfähigkeiten gelten für den Versagensmechanismus mit 2 Fließgelenken je Scherläche.
- Der Einhängeefekt wurde für U-Scheiben nach DIN 1052 und EN ISO 7094 berechnet. Als Einhängeefekt werden 25% der Abschertragfähigkeit angerechnet.
- $\bullet \qquad \text{Bei geringeren Mindestholzdicken als angegeben muss die Abschertragfähigkeit } F_{v,Rk} \text{ im Verhältnis } t/t_{req} \text{ abgemindert werden}.$

Bei abweichender Rohdichte oder Stahlfestigkeit muss $F_{v,Rk}$ mit $\sqrt{\frac{\rho_k}{350} \cdot \frac{f_{uk}}{400}}$, t_{req} mi $\sqrt{\frac{350}{\rho_k} \cdot \frac{f_{uk}}{400}}$ multipliziert werden. Bemessungswert der Tragfähigkeit: $F_{v,Rd} = k_{mod} \cdot F_{v,rk} / \gamma_M$ mit $\gamma_M = 1,3$.

Bei Verbindungen mit mehreren Verbindungsmittel in Faserrichtung hintereinander ist die wirksame Bolzenanzahl nef nach EN 1995-1-1 8.9 (8.71) zu berücksichtigen.

BEMESSUNGSHILFEN FÜR SCHEIBENDÜBEL MINDESTABSTÄNDE

S3 Mindestabstände von C1 und C2 Scheibendübel nach DIN EN 1995-1-1 Tabelle 8.8

Abstände	Winkel	Mindestabstände
a ₁ (in Faserrichtung)	0° ≤ α ≤ 360°	$(1,2 + 0,3 l cos \alpha l) d_c$
a ₂ (rechtwinklig zur Faserrichtung)	0° ≤ α ≤ 360°	1,2 d _c
a _{3,t} (beanspruchtes Hirnholzende)	-90° ≤ α ≤ 90°	1,5 d _c *
	90° ≤ α < 150°	(0,9 +0,6 lsin αl) d _c
a _{3,c} (unbeanspruchtes Hirnholzende)	150° ≤ α < 210°	1,2 d _c
	210° ≤ α < 270°	(0,9 +0,6 lsin α l) d _c
a _{4,t} (beanspruchter Rand)	0° ≤ α ≤ 180°	(0,6 +0,2 lsin αl) d _c
a _{4,c} (unbeanspruchter Rand)	180° ≤ α ≤ 360°	0,6 d _c
* Für -30° $\leq \alpha \leq$ 30° darf $a_{3,t}$ auf max {1,1 $d_{c,t}$	7 d; 80 mm} verringert werden wenn	die Tragfähigkeit entsprechend abgemindert wird.

S4 Mindestabstände für Scheibendübel Typ C1 und C2 in Abhängigkeit des Kraft-Faser-Winkels α nach DIN EN 1995-1-1

α	a ₁	a ₂	a _{3,t}	a _{3,c}	a _{4,†}	a _{4,c}
•	mm	mm	mm	mm	mm	mm
0	1,5 d _c			1,2 d _c	0,6 d _c	
15	1,49 d _c			1,2 d _c	0,66 d _c	
30	1,46 d _c			1,2 d _c	0,7 d _c	
45	1,42 d _c	1,2 d _c	1,5 d _c *	1,33 d _c	0,75 d _c	0,6 d _c
60	1,35 d _c			1,42 d _c	0,78 d _c	
75	1,28 d _c			1,48 d _c	0,8 d _c	
90	1,2 d _c			1,5 d _c	0,8 d _c	
* Für -30° ≤ α ≤ 30° da	rf a _{3.t} auf max {1,1 d _c ; 7 c	l; 80 mm} verringert we	erden wenn die Tragfähi	gkeit entsprechend abg	emindert wird.	•

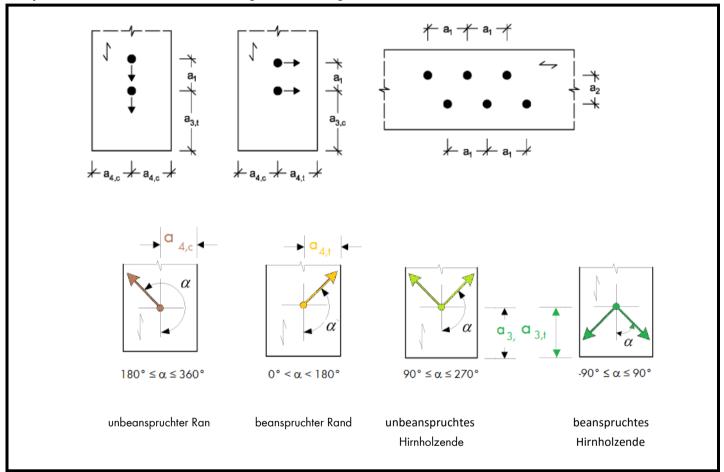
BEMESSUNGSHILFEN FÜR SCHEIBENDÜBEL MINDESTABSTÄNDE

55 Mindestabstände von C10 und C11 Scheibendübel nach DIN EN 1995-1-1 Tabelle 8.9

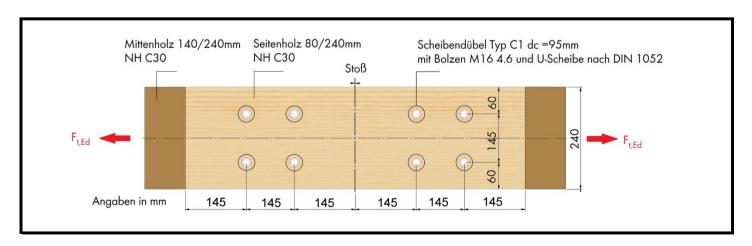
Abstände	Winkel	Mindestabstände							
a ₁ (in Faserrichtung)	0° ≤ α ≤ 360°	$(1,2 + 0,8 l cos \alpha l) d_c$							
a ₂ (rechtwinklig zur Faserrichtung)	0° ≤ α ≤ 360°	1,2 d _c							
a _{3,t} (beanspruchtes Hirnholzende)	-90° ≤ α ≤ 90°	2,0 d _c *							
	90° ≤ α < 150°	(0,4 +1,6 lsin α l) d _c							
a _{3,c} (unbeanspruchtes Hirnholzende)	150° ≤ α < 210°	1,2 d _c							
	210° ≤ α < 270°	(0,9 +0,6 lsin αl) d _c							
a _{4,t} (beanspruchter Rand)	0° ≤ α ≤ 180°	(0,4 +1,6 lsin α l) d _c							
a _{4,c} (unbeanspruchter Rand)	180° ≤ α ≤ 360°	0,6 d _c							
* Für -30° ≤ α ≤ 30° darf α _{3,1} auf max {1,1 d _c ; 7 d; 80 mm} verringert werden wenn die Tragfähigkeit entsprechend abgemindert wird.									

S6 Mindestabstände für Scheibendübel Typ C10 und C11 in Abhängigkeit des Kraft-Faser-Winkels α nach DIN EN 1995-1-1

α	a ₁	a ₂	a _{3,t}	a _{3,c}	a _{4,†}	a _{4,c}			
0	mm	mm	mm	mm	mm	mm			
0	2,00 d _c			2,00 d _c	0,60 d _c				
15	1,98 d _c			1,98 d _c	0,66 d _c				
30	1,90 d _c			1,90 d _c	0,70 d _c				
45	1,77 d _c	1,2 d _c	2,0 d _c *	1,77 d _c	0,75 d _c	0,6 d _c			
60	1,60 d _c			1,60 d _c	0,78 d _c				
75	1,41 d _c			1,41 d _c	0,80 d _c				
90	1,20 d _c	1		1,20 d _c	0,80 d _c				
* Für -30° ≤ α ≤ 30° darf a _{3,t} auf max {1,1 d _c ; 7 d; 80 mm} verringert werden wenn die Tragfähigkeit entsprechend abgemindert wird.									

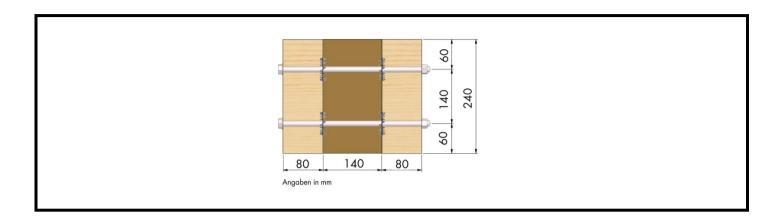

57 Mindestabstände für Bolzen in Abhängigkeit des Kraft-Faser-Winkels α nach DIN EN 1995-1-1

α	a ₁	a ₂	a _{3,t}	a _{3,c}	a _{4,†}	a _{4,c}
0	mm	mm	mm	mm	mm	mm
0	5,00 d			4,00 d	3,00 d	
15	4,97 d			4,00 d	3,00 d	
30	4,87 d		4,00 d		3,00 d	
45	4,71 d	4 d	max {7 d;80 mm}	5,25 d	3,42 d	3 d
60	4,50 d		6,20 d 3,		3,74 d	
75	4,26 d			6,80 d	3,94 d	
90	4,00 d			7,00 d	4,00 d	



BEMESSUNGSHILFEN FÜR SCHEIBENDÜBEL MINDESTABSTÄNDE

Graphik Mindestabstände von stiftförmigen Verbindungsmittel



Rechenbeispiel: doppelt symmetrischer Zugstoß (α = 0°)

BEMESSUNGSHILFEN FÜR SCHEIBENDÜBEL BEISPIELRECHNUNG

Vorgaben:

zu verbindende Bauteile: Nadelholz C30 140/240

Verbindungsmittel: Dübel bes. Bauart C1 und Bolzen 4.6

Bemessungswert der Zugkraft in der Verbindung: $F_{t,Ed} = 160 \text{ kN}$ (KLED kurz)

Materialeigenschaften C30: $\rho_k = 380 \text{ kg/m}^3$ $f_{t,0,k} = 18 \text{ N/mm}^2$

Mögliche Dübeldurchmesser bei zweireihiger Dübelanordnung

$$h_{erf} = 2 \cdot a_{4,c} + a_2 \le h_{vorh}$$

$$a_{4,c} = 0.6 d_c$$
; $a_2 = 1.2 d_c$

$$\rightarrow$$
 d_c \leq h_{vorh} / (2 · 0,6 + 1,2) = 240 / 2,4 = 100 mm

 \rightarrow gewählt Dübel C1 mit d_c = 95 mm und Bolzen M16 4.6 mit U-Scheibe DIN 440 17,5x56x5

Mindestholzdicken Mittelholz aus Tabellen S1 und S2 für $\rho_{\mathbf{k}}$ = 350 kg/m³

Dübel C1
$$t_{2,req} = 57 \text{ mm}$$
 $< b_{vorh} = 140 \text{ mm}$

Bolzen M16
$$t_{2,req} = 67 \text{ mm x} \sqrt{\frac{350}{380}} = 64 \text{ mm}$$
 $< b_{vorh} = 140 \text{ mm}$ (Umrechnung d_a $\rho_k \neq 350 \text{ kg/m}^3$)

Mindestholzdicke Seitenhölzer aus Tabellen S1 und S2 für $\rho_{\mathbf{k}}$ = 350 kg/m³

Dübel C1
$$t_{2,req} = 34 \text{ mm}$$

Bolzen M16
$$t_{2,req} = 80 \text{ mm x} \sqrt{\frac{350}{380}} = 77 \text{ mm} < b_{vorh} = 140 \text{ mm} \rightarrow \text{gewählt KVH C30 80/240}$$

BEMESSUNGSHILFEN FÜR SCHEIBENDÜBEL BEISPIELRECHNUNG

Tragfähigkeiten aus Tabellen S1 und S2 für ρ_k = 350 kg/m³

Dübel C1 $d_c = 95 \text{ mm}$ $F_{v,Rk} = 16,67 \text{ kN}$

Bolzen M16 $F_{v,Rk} = 13,98 \text{ kN}$

Umrechnung da $\rho_k \neq 350 \text{ kg/m}^3$

Dübel C1 $F_{v,Rk} = 16,67 \times \frac{380}{350} = 18,1 \text{ kN}$

Bolzen M16 $F_{v,Rk} = 13,98 \text{ kN} \times \sqrt{\frac{380}{350}} = 14,6 \text{ kN}$

Gesamttragfähigkeit einer Verbindungseinheit aus Dübel und Bolzen (2 Scherflächen)

 $F_{v,Rk} = 2 \times (18,1 + 14,67) = 65,4 \text{ kN}$

Bemessungswert der Tragfähigkeit

 $F_{v,Rd} = k_{mod} \times F_{v,Rk} / \gamma_M = 0.9 \times 65.4 / 1.3 = 45.3 \text{ kN}$

Abschätzung der erforderlichen Anzahl an Verbindungseinheiten

 $n_{eff} = F_{t,Ed} / F_{v,Rd} = 160 / 45,3 = 3,53$ \rightarrow gewählt: n = 4

Mindestabstände für Dübel Typ C1 d_c = 95 mm für α = 0°

 a_1 = 1,5 d_c = 143 mm \rightarrow gewählt: 145 mm

 $a_2 = 1.2 d_c = 114 mm$ \rightarrow gewählt: 120 mm

 $a_{3,t}$ = 1,5 d_c = 143 mm \rightarrow gewählt: 145 mm

 $a_{4/c} = 0.6 d_c = 57 \text{ mm}$ $\rightarrow \text{gewählt: } 60 \text{ mm}$

Wirksame Anzahl der Verbindungseinheiten in Faserrichtung hintereinander

 $n_{ef} = 2 + (1 - n / 20) \times (n - 2) = 2 + (1 - 2 / 20) \times (2 - 2) = 2$ \rightarrow keine Abminderung erforderlich

Gesamttragfähigkeit der Verbindung mit 4 Verbindungseinheiten

 $F_{Rd} = 4 \times 45.3 = 181 \text{ kN} > F_{t,Ed} = 160 \text{ kN}$

Nettoquerschnittsfläche des Mittelholzes

 $A_n = b \times h - 4 \times \Delta A - 2 \times (d_{Bo} + 1 \text{ mm}) \times (b - 2 \times h_e) = 140 \times 240 - 4 \times 670 - 2 \times (16 + 1) \times (140 - 2 \times 11,3) = 26928 \text{ mm}^2$

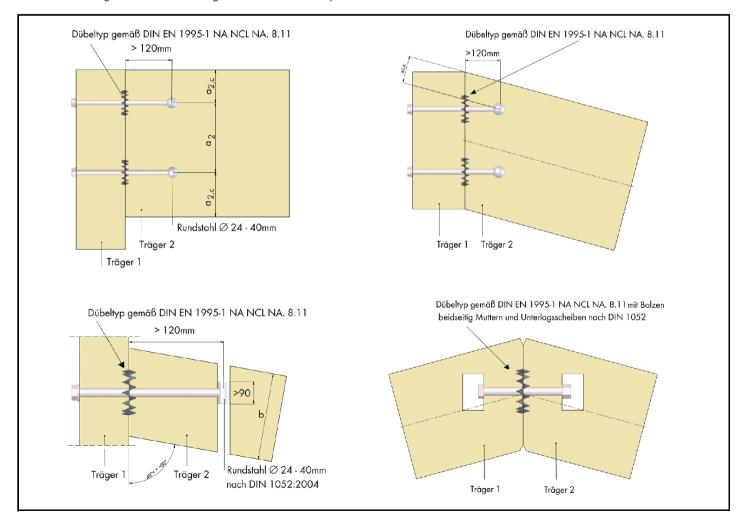
BEMESSUNGSHILFEN FÜR SCHEIBENDÜBEL BEISPIELRECHNUNG

Zugtragfähigkeit im Nettoquerschnitt:

$$F_{t,0,Rd} = A_n \times f_{t,0,d} = 26928 \times 18 \times 0.9 / 1.3 = 336 \text{ kN}$$

 $> F_{t,Ed}$

Nettoquerschnittsfläche des Seitenholzes


$$A_n = b \times h - 2 \times \Delta A - 2 \times (d_{Bo} + 1 \text{ mm}) \times (b - h_e) = 80 \times 240 - 2 \times 670 - 2 \times (16 + 1) \times (140 - 11,3) = 13484 \text{ mm}^2$$

Zugtragfähigkeit beider Seitenhölzer im Nettoquerschnitt:

$$F_{t.0.Rd} = 2 \times A_n \times 2 / 3 \times f_{t.0.d} = 2 \times 13484 \times 2 / 3 \times 18 \times 0.9 / 1.3 = 224 \text{ kN}$$
 > $F_{t.Ed}$

Hirnholzverbindungen und Schräganschluss nach DIN EN 1995-1-1/NA NCI NA.8.11

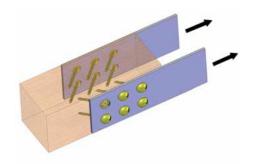
Mit Scheibendübeln mit Zähnen (Typ C1, d_c ≤ 140 mm; Typ C10 ohne Durchmesserbegrenzung) können rechtwinklige oder schräge Anschlüsse (φ ≥45°) in Hirnholzflächen von Vollholz, Brettschichtholz oder Balkenschichtholz hergestellt werden. Zur Lagesicherung sind Klemmvorrichtungen zwischen Unterlagscheibe und Bolzenkopf einzubauen.

BEMESSUNGSHILFEN FÜR SCHEIBENDÜBEL HINWEISE

Bei Einbau der Scheibendübels in Hirnholzflächen sind folgende Rahmenbedingungen zu beachten

- Breite des anzuschließenden Trägers
- Mittige Anordnung des Dübel in der anzuschließenden Hirnholzfläche des Träger
- Abstände zum Rand a_{2,c} und untereinander a₂

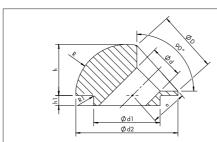
Anforderung an die Holzmaße und Scheibenabstände bei einem Hirnholzanschluss DIN EN 1995-1-1/NA Tab. NA.20

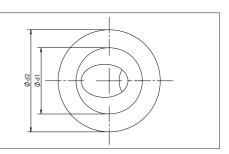

Dübeltyp	Durchmesser d _c in mm	Mindestbreite des	Abstan	d in mm
		anzuschließenden Trägers in mm	a _{2,c}	a_2
C1	50	100	55	55
	62	115	70	70
	75	125	90	90
C10	50	100	65	65
	62	115	85	85
	75	130	100	100
	95	150	115	115

Verarbeitungshinweise:

- 1. Alle Scheibendübel mit Zähnen werden zur Herstellung der Verbindung in das Holz eingepresst. Um eine vollständige Tragfähigkeit der Verbindung zu erreichen müssen die Zähne vollständig und unversehrt im Holz versenkt werden. Beschädigungen der Zähne während des Eintreibprozesses sind zu vermeiden.
- 2. Jeder Dübel ist wegen der auftretenden Versatzmomente durch einen nachziehbaren passenden Bolzen mit ausreichend großen beidseitigen Unterlagscheiben zu sichern.
- 3. Bei Verwendung von Vollholz darf die mittlere Holzfeuchte nicht mehr als 20 % betragen.
- 4. Ist mit Schwindverformungen zu rechnen, sind die Bolzen aufgrund der zu erwartenden schwindenden Bolzverspannung wiederholt nachzuziehen. Sie müssen hierfür eine genügend lange Gewindelänge haben. Auf ein Nachziehen kann nur dann verzichtet werden, wenn beim Einbau die Holzfeuchte der zu verbindenden Holzbauteile nicht mehr als 5 % über der zu erwartenden mittleren Gleichgewichtsholzfeuchte liegt.
- 5. Die Bolzen dürfen bei allen Ring- oder Scheibendübeln mit Zähnen bzw. Dornen, die senkrecht oder im Winkel größer 0° zur Faser eingesetzt werden, durch entsprechende Gewindestangen oder ASSY Holzschrauben ersetzt werden. Die Tragfähigkeiten der ASSY Schrauben dürfen in diesem Falle nicht angesetzt werden.
- 6. Für die Verbindung von Laubhölzern sind Scheibendübel mit Zähnen nicht geeignet.
- 7. Die Mindestbreite der Holzelemente und die Mindestabstände sind zu beachten.
- 8. Scheibendübel des Typs C10 und C11 dürfen zur Vermeidung von größeren Fugen und stärkeren Vertiefungen im Bereich der Berührungsflächen eingelassen werden

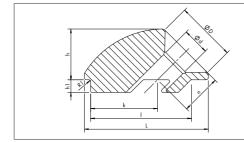
45° WINKELSCHEIBE

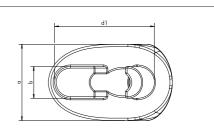



- Ideal zur Befestigung von metallenen Zugblechen mit ASSY® 3.0 oder ASSY® plus VG mit Senkkopf.
- Zur optimalen Übertragung von Zugkräften durch hohe Passgenauigkeit Schraube/Winkelscheibe und exakte 45° Einschraubung.

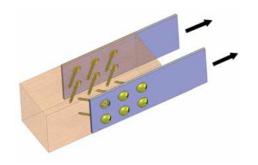
für ASSY® Schrauben mit Senkkopf

- Kein Durchziehen des Schraubenkopfes bei der Verwendung von dünnen Blechen.
- Schnelle einfache Montage der Winkelscheibe durch eine einfache Loch- oder Langlochbohrung in der Metallplatte.
- Saubere Verarbeitungsoptik der Schraubverbindung.



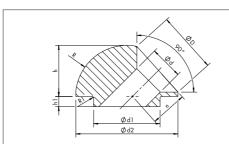


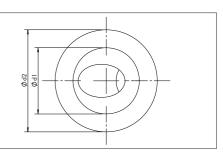
für ASSY® Senkkopfschrauben aus Stahl														
Metallplatten-	Material /	Schraube	Ø Lochmaß	d	D	d1	d2	h	h1	R	R1	n	ArtNr.	VE
stärke mm	Oberfläche	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		St.
2-3	Stahl / A2K	8	16,0	8,5	14,8	15,9	25,0	11,6	1,9	12,5	0,3	7,2	0457 700 482	50


für ASSY® S	für ASSY® Senkkopfschrauben aus Stahl															
Metall- platten- stärke mm	Material / Oberfläche	Schraube mm	Langloch- maß mm	d mm	D mm	k mm	L mm	l mm	h mm	h1 mm	a mm	b mm	R1 mm	n mm	ArtNr.	VE St.
3-10	Stahl / A2K	6	22 x 7	6,5	14,5	14,5	29,5	22,7	13,5	2,7	1 <i>7</i> ,0	6,9	0,3	10,7	0457 700 483	50
4-15	Stahl / A2K	8	32 x 10	8,5	39,0	21,0	39,0	31,7	16,0	3,7	24,0	9,9	0,3	12,7	0457 700 484	50
5-20	Stahl / A2K	10	44 x 11	10,7	24,0	28,7	52,0	43,7	21,4	4,7	29,0	10,8	0,3	18,4	0457 700 485	25
6-25	Stahl / A2K	12	50 x 13	12,7	26,0	34,0	59,0	49,7	23,5	5,6	30,0	12,8	0,3	19,8	0457 700 486	25

für ASSY® S	für ASSY® Senkkopfschrauben aus Edelstahl															
Metall- platten- stärke mm	Material / Oberfläche	Schraube mm	Langloch- maß mm	d mm	D mm	k mm	L mm	l mm	h mm	h1 mm	a mm	b mm	R1 mm	n mm	ArtNr.	VE St.
3-10	Edelstahl A2	6	22 x 7	6,5	14,5	14,5	29,5	22,7	13,5	2,7	17,0	6,9	0,3	10,7	0457 700 493	50
4-15	Edelstahl A2	8	32 x 10	8,5	39,0	21,0	39,0	31,7	16,0	3,7	24,0	9,9	0,3	12,7	0457 700 494	50

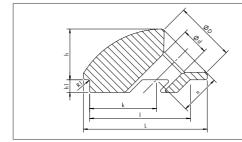
45° WINKELSCHEIBE

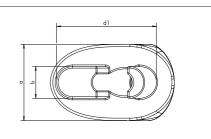



- Ideal zur Befestigung von metallenen Zugblechen mit ASSY® 3.0 oder ASSY® plus VG mit Senkkopf.
- Zur optimalen Übertragung von Zugkräften durch hohe Passgenauigkeit Schraube/Winkelscheibe und exakte 45° Einschraubung.

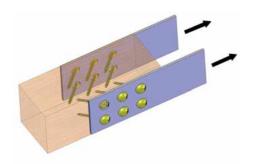
für ASSY® Schrauben mit Senkkopf

- Kein Durchziehen des Schraubenkopfes bei der Verwendung von dünnen Blechen.
- Schnelle einfache Montage der Winkelscheibe durch eine einfache Loch- oder Langlochbohrung in der Metallplatte.
- Saubere Verarbeitungsoptik der Schraubverbindung.



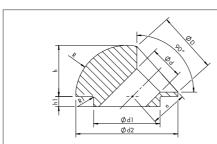


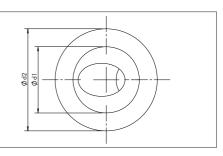
für ASSY® Senkkopfschrauben aus Stahl														
Metallplatten-	Material /	Schraube	Ø Lochmaß	d	D	d1	d2	h	h1	R	R1	n	ArtNr.	VE
stärke mm	Oberfläche	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		St.
2-3	Stahl / A2K	8	16,0	8,5	14,8	15,9	25,0	11,6	1,9	12,5	0,3	7,2	0457 700 482	50


für ASSY® S	für ASSY® Senkkopfschrauben aus Stahl															
Metall- platten- stärke mm	Material / Oberfläche	Schraube mm	Langloch- maß mm	d mm	D mm	k mm	L mm	l mm	h mm	h1 mm	a mm	b mm	R1 mm	n mm	ArtNr.	VE St.
3-10	Stahl / A2K	6	22 x 7	6,5	14,5	14,5	29,5	22,7	13,5	2,7	1 <i>7</i> ,0	6,9	0,3	10,7	0457 700 483	50
4-15	Stahl / A2K	8	32 x 10	8,5	39,0	21,0	39,0	31,7	16,0	3,7	24,0	9,9	0,3	12,7	0457 700 484	50
5-20	Stahl / A2K	10	44 x 11	10,7	24,0	28,7	52,0	43,7	21,4	4,7	29,0	10,8	0,3	18,4	0457 700 485	25
6-25	Stahl / A2K	12	50 x 13	12,7	26,0	34,0	59,0	49,7	23,5	5,6	30,0	12,8	0,3	19,8	0457 700 486	25

für ASSY® S	enkkopfschi	auben aus	Edelstahl													
Metall- platten- stärke mm	Material / Oberfläche	Schraube mm	Langloch- maß mm	d mm	D mm	k mm	L mm	l mm	h mm	h1 mm	a mm	b mm	R1 mm	n mm	ArtNr.	VE St.
3-10	Edelstahl A2	6	22 x 7	6,5	14,5	14,5	29,5	22,7	13,5	2,7	17,0	6,9	0,3	10,7	0457 700 493	50
4-15	Edelstahl A2	8	32 x 10	8,5	39,0	21,0	39,0	31,7	16,0	3,7	24,0	9,9	0,3	12,7	0457 700 494	50

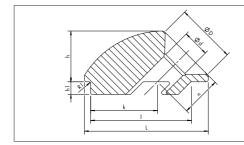
45° WINKELSCHEIBE

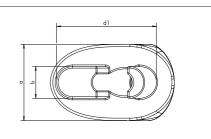



- Ideal zur Befestigung von metallenen Zugblechen mit ASSY® 3.0 oder ASSY® plus VG mit Senkkopf.
- Zur optimalen Übertragung von Zugkräften durch hohe Passgenauigkeit Schraube/Winkelscheibe und exakte 45° Einschraubung.

für ASSY® Schrauben mit Senkkopf

- Kein Durchziehen des Schraubenkopfes bei der Verwendung von dünnen Blechen.
- Schnelle einfache Montage der Winkelscheibe durch eine einfache Loch- oder Langlochbohrung in der Metallplatte.
- Saubere Verarbeitungsoptik der Schraubverbindung.





für ASSY® Senk	für ASSY® Senkkopfschrauben aus Stahl													
Metallplatten-	Material /	Schraube	Ø Lochmaß	d	D	d1	d2	h	h1	R	R1	n	ArtNr.	VE
stärke mm	Oberfläche	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		St.
2-3	Stahl / A2K	8	16,0	8,5	14,8	15,9	25,0	11,6	1,9	12,5	0,3	7,2	0457 700 482	50

für ASSY® S	für ASSY [®] Senkkopfschrauben aus Stahl															
Metall- platten- stärke mm	Material / Oberfläche	Schraube mm	Langloch- maß mm	d mm	D mm	k mm	L mm	l mm	h mm	h1 mm	a mm	b mm	R1 mm	n mm	ArtNr.	VE St.
3-10	Stahl / A2K	6	22 x 7	6,5	14,5	14,5	29,5	22,7	13,5	2,7	1 <i>7</i> ,0	6,9	0,3	10,7	0457 700 483	50
4-15	Stahl / A2K	8	32 x 10	8,5	39,0	21,0	39,0	31,7	16,0	3,7	24,0	9,9	0,3	12,7	0457 700 484	50
5-20	Stahl / A2K	10	44 x 11	10,7	24,0	28,7	52,0	43,7	21,4	4,7	29,0	10,8	0,3	18,4	0457 700 485	25
6-25	Stahl / A2K	12	50 x 13	12,7	26,0	34,0	59,0	49,7	23,5	5,6	30,0	12,8	0,3	19,8	0457 700 486	25

für ASSY® S	enkkopfschi	auben aus	Edelstahl													
Metall- platten- stärke mm	Material / Oberfläche	Schraube mm	Langloch- maß mm	d mm	D mm	k mm	L mm	l mm	h mm	h1 mm	a mm	b mm	R1 mm	n mm	ArtNr.	VE St.
3-10	Edelstahl A2	6	22 x 7	6,5	14,5	14,5	29,5	22,7	13,5	2,7	17,0	6,9	0,3	10,7	0457 700 493	50
4-15	Edelstahl A2	8	32 x 10	8,5	39,0	21,0	39,0	31,7	16,0	3,7	24,0	9,9	0,3	12,7	0457 700 494	50

FT-VERBINDER

Ausführung	Einsatzbereich	ArtNr.	VE/St.
Für ASSY® plus VG Ø 10 mm Senkkopf	Nutzungsklasse 1 oder 2*	0165 300 10	50

Zur Herstellung von Holz-Beton-Verbund Decken

Anwendung:

- Geeignet für die Vor-Ort-Montage mit Nassbeton und für die Verschraubung von Fertigteilelementen (FT) mit eingegossenen FT-Verbindern auf einer entsprechenden Holzdeckenkonstruktion.
- Geeignet für den Verbau auf Balken- als auch Massivholzdecken.
- Zugelassen für den Einsatz in Nutzungsklasse 1 und 2*
 (* bei ausreichender Betonüberdeckung).

Vorteile:

- ca. 4-fache Tragfähigkeit im Vergleich zu konventionellen HBV-Varianten mit Schrauben, dadurch Minimierung der Montagezeit.
- Vorgabe und Einhaltung des Einschraubwinkel.
- Hohe Gesamtsteifigkeit der Deckenkonstruktion.
- Realisierung großer Spannweiten oder Decken mit höherer Tragfähigkeit bei Holzbalken- und Massivholzdecken.
- Keine Lizenzierung, hohe Wertschöpfung bei einer Eigenproduktion.
- Flexibel für verschiedene Systeme einsetzbar.

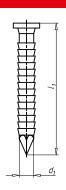
... und speziell bei der Verbauung von trockenen vorgefertigten Betonfertigteilelementen mit integrierten FT-Verbindern

- Sehr schnelle Verlegung
- Volle Tragfähigkeit der Verbundkonstruktion nach dem Verschrauben (sofortige Verbundwirkung)
- Keine Wartezeiten während des Trocknungsprozesses des Betons; Bauarbeiten können direkt fortgesetzt werden.
- Keine aufwendig abzuklebende Trennlage
- Minimierung des Feuchtigkeitseintrages ins Gebäude und Minimierung der Quell- und Schwindreaktionen der Holzbauteile.

Hinweise bei der Verwendung von Betonfertigteilelementen:

- Spaltfreier Zusammenzug der Betonfertigteilelemente mit der Holzdecke mittels ASSY® 3.0 SK Scheibenkopfschrauben.
- 2. Drehmomentanzug (20 Nm) der ASSY® plus VG Senkkopfschrauben Ø 10 mm für die FT-Verbinder.
- 3. Zur Vermeidung einer Schwindung der Holzdecken nach der Montage ist die rohe Holzdecke vor einem Feuchteeintrag zu schützen.

KAMMNAGEL/ANKERNAGEL


ArtNr.	0681 940 040	0681 940 050	0681 940 060	0681 940 075	0681 940 100
VE	2000	2000	250/2000	250	250
Durchmesser	4 mm				
Länge	40 mm	50 mm	60 mm	75 mm	100 mm
Werkstoff	Stahl	Stahl	Stahl	Stahl	Stahl
Oberfläche	Verzinkt	Verzinkt	Verzinkt	Verzinkt	Verzinkt

Stahl verzinkt, blau passiviert (A2K)

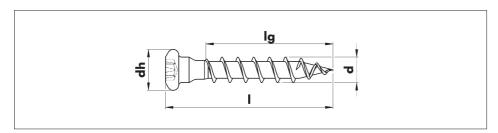
Der konische Teil unter dem Nagelkopf sorgt dafür, dass der Nagel das Loch im Holzverbinder ausfüllt, wodurch eine exakte Kraftübertragung gesichert ist.

ANKERNAGEL 26°

Stahl verzinkt, blau passiviert (A2K)

Nägel nach DIN EN 14592 + A1

ArtNr.	0486 440 40	0486 440 50	0486 440 60
VE	3000	3000	3000
Nenndurchmesser (d ₁)	4 mm	4 mm	4 mm
Länge (I ₁)	40 mm	50 mm	60 mm
Werkstoff	Stahl	Stahl	Stahl
Oberfläche	Verzinkt	Verzinkt	Verzinkt
Ausführung	Gerillt	Gerillt	Gerillt


Anwendungsgebiet

Winkelverbinder, Balkenschuhe, Kreuzverbinder, Stahlbleche und Stahlblechformteile, Sparrenpfettenanker, Sparrenfußbeschläge, Lochplatten, Flachstahlanker, Windrispenbänder etc.

ASSY 3.0 BALKENSCHUHSCHRAUBE

d mm	l mm	lg mm	dh mm	Antrieb	ArtNr. verzinkt, blau passiviert (A2K)	VE/St.
	25	20			0153 350 25	
	35	30			0153 350 35]
<i>5</i> O	40	35		AVA/20	0153 350 40	250
5,0	50	45	8,0	AW20	0153 350 50	250
	60	52			0153 350 60]
	70	62			0153 350 70]

Verwendungsinformationen:

- Vergleichbare Abscherwerte und höhere Ausziehwerte im Vergleich zu 4,0 mm Ankernägel.
- Einschraubwinkel 0° bis 90°.
- Ein Vorbohren in Vollholz und Holzwerkstoffe aus Nadelholz optional zulässig. Bei Laubholzuntergründen ist entsprechend ETA 11/0190 vorzubohren.

Werkstoff:

Hochfester Stahl für hohe Bruchdrehmomente/verzinkt, blau passiviert (A2K).

Untergründe:

Vollholz aus Nadelholz oder Buche/ Eiche (vorgebohrt), Brettschichtholz, Brettsperrholz, Duo und Triobalken, LVL.

Hinweis:

Es sind die Vorgaben der Europäisch technischen Zulassung ETA 11/0190 und des zu befestigenden Blechformteiles zu beachten. ASSY® 3.0 Balkenschuhschraube mit formschlüssigem Balkenschuhschraubenkopf speziell für die Blechformteil-Holz-Verbindung im Ladenbau, Schalungsbau, Neubau und in der Sanierung. Ideal geeignet für später wieder zu demontierende Blechformteilanschlüsse oder für Anschlüsse mit hohen Lasten an dünnen Holzquerschnitten.

Verstärkter Kopf mit vergrößerter Auflage

Hohe Flächenanpressung

Zylindrische Schaftverstärkung auf den Außendurchmesser unterhalb des Kopfes

Formschlüssiger Blechformteilanschluss und hohe Abscherwerte

Asymmetrisches Grobganggewinde

Schnelle Verschraubung und hohe Auszugswerte

Patentierte Spitze mit Gegengewinde

Reduzierte Spaltwirkung, schnelles Greifen und punktgenaues Ansetzen

AW-Antrieb

Taumelfreies, sicheres Ansetzen der Schraube

CHARAKTERISTISCHE TRAGFÄHIGKEITEN IN KN MIT WÜRTH KAMM-/ANKERNÄGEL UND WÜRTH BALKENSCHUHSCHRAUBE

Charakteristische Tragfähigkeiten von Würth Kamm- und Ankernägeln für bei den angegeben Rohdichten nach DIN 338 und DIN EN 14080

-	
1111	

ArtNr.	Ankernägel	ρ _k = 35	0 kg/m³	ρ _k = 38	5 kg/m³	ρ _k = 42 5	kg/m³	$\rho_k = 44$	0 kg/m³
	d x l [mm]	F _{V,Rk}	F _{ax,Rk}	F _{V,Rk}	F _{ax,Rk}	F _{V,Rk}	F _{ax,Rk}	F _{V,Rk}	F _{ax,Rk}
0681 940 040	4,0 x 40mm	1,68	0,74	1,81	0,80	1,96	0,86	2,02	0,89
0681 940 050	4,0 x 50mm	1,99	0,98	2,15	1,06	2,32	1,14	2,39	1,18
0681 940 060	4,0 x 60mm	2,15	1,23	2,32	1,33	2,51	1,44	2,58	1,48
0681 940 075	4,0 x 75mm	2,24	1,59	2,42	1,72	2,62	1,86	2,69	1,91
0681 940 100	4,0 x 100mm	2,27	1,72	2,45	1,86	2,65	2,01	2,73	2,07

Charakteristische Tragfähigkeiten von Würth ASSY 3.0 Balkenschuhschrauben bei den angegeben Rohdichten nach DIN 338 und DIN EN 14080

ArtNr.	Balkenschuh- schraube	ρ_k = 350 kg/m ³		ρ _k = 38	ρ_k = 385 kg/m ³		kg/m³	$\rho_{\rm k}$ = 440 kg/m ³	
	d x I [mm]	F _{V,Rk}	F _{ax,Rk}	F _{V,Rk}	F _{ax,Rk}	F _{V,Rk}	F _{ax,Rk}	F _{V,Rk}	F _{ax,Rk}
0153 35 025	5,0 x 25mm	1,5	1,2	1,61	1,3	1,74	1,4	1,78	1,44
0153 35 035	5,0 x 35mm	1,92	1,8	2,08	1,94	2,26	2,1	2,33	2,16
0153 35 040	5,0 x 40mm	2,15	2,1	2,31	2,27	2,45	2,45	2,49	2,52
0153 35 050	5,0 x 50mm	2,29	2,52	2,47	2,91	2,62	3,15	2,67	3,24
0153 35 060	5,0 x 60mm	2,44	3,12	2,59	3,37	2,74	3,64	2,8	3,75
0153 35 070	5,0 x 70mm	2,58	3,66	2,75	4,01	2,92	4,35	2,98	4,47

Hinweise:

- Die Bemessungstabellen können nur angewendet werden, wenn alle Nägel und Stabdübel in die vorgesehenen Löcher eingebracht werden.
- Der Nebenträger sollte etwa 40mm in der Höhe größer als der Balkenträger sein.
- Die Tragfähigkeiten der jeweiligen Verbindungsmittel werden gemäß DIN EN 1995-1-1 / NA.
- \bullet Die Kraft $F_{z,down}$ und $F_{z,up}$ wirken mittig im Nebenträger. Der Hauptträger ist gegen Verdrehen zu sichern.
- Der Spalt zwischen Haupt- und Nebenträger darf nicht größer sein als 8mm.
- Die Querzugtragfähigkeit des Hauptträgers ist gesondert zu untersuchen. Gegebenfalls ist eine Querzugsicherung mit ASSY plus VG Schrauben vorzunehmen.
- Beim einseitigen Anschluss am Hauptträger ist das Versatzmoment zu beachten.
- Die Bestimmungen der ETA-09/0105 sind anzuwenden.

$$M_{ec} = R_{Joist} \left(\frac{b_{header}}{(2 + 40mm)} \right)$$

6KT.-HOLZSCHRAUBEN

DIN 571

- Für feste Holzverbindungen.
- Durch den 6-kt.-Kopf besserer Kraftangriff beim Eindrehen.
- Die Holzschraube formt sich ihr Muttergewinde, sie schneidet es nicht.
- Je nach Durchmesser und Holzart (Hartholz), ist ein Kernloch vorzubohren.

Anwendung

Im Holzbau, speziell zum Reihenfertighausbau, Gerätehallenbau, Messebau, Bootsbau, Fahrzeugbau usw.

Länge mm	Ø 5 mm SW 8 ArtNr.	VE/St.	Ø 6 mm SW 10 ArtNr.	VE/St.	Ø 8 mm SW 13 ArtNr.	VE/St.
20			01926 20	500		
25			0192 6 25	500	01928 25	200
30			01926 30	200/500	01928 30	200
35			01926 35	200	01928 35	200
40	01925 40	200	01926 40	200	01928 40	100/200
45			01926 45	200	01928 45	100/200
50	01925 50	200	01926 50	200	01928 50	100/200
55			01926 55	200	01928 55	100/200
60	0192 5 60	200	01926 60	100/200	01928 60	100/200
65			01926 65	100/200	01928 65	100/200
70			01926 70	100/200	01928 70	100/200
80			01926 80	100/200	01928 80	50/100
90			01926 90	50/100	01928 90	50/100
100			01926 100	50/100	01928 100	50/100
110			01926 110	50/100	01928 110	50/100
120			0192 6 120	50/100	01928 120	50/100
130					01928 130	50/100
140					01928 140	50
150					01928 150	25/50
160					01928 160	50
180					01928 180	50
200					01928 200	50

ORSY®-lagerfähig

6KT.-HOLZSCHRAUBEN

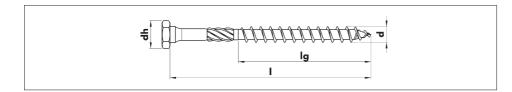
Länge	Ø 10 mm SW 17	VE/St.	Ø 12 mm SW 19	VE/St.	Ø 16 mm SW 24	VE/St.
mm	ArtNr.		ArtNr.		ArtNr.	
30	0192 10 30	100/200				
40	0192 10 40	100	0192 12 40	50		
50	0192 10 50	50/100	0192 12 50	50		
60	0192 10 60	50/100	0192 12 60	50		
70	0192 10 70	50/100	0192 12 70	50	0192 16 70	25
80	0192 10 80	50/100	0192 12 80	50	0192 16 80	25
90	0192 10 90	25/100	0192 12 90	50	0192 16 90	25
100	0192 10 100	25/50	0192 12 100	25/50	0192 16 100	25
110	0192 10 110	25/50	0192 12 110	25/50		
120	0192 10 120	25/50	0192 12 120	50	0192 16 120	25
130	0192 10 130	25/50	0192 12 130	25/50	0192 16 130	25
140	0192 10 140	25/50	0192 12 140	50		
150	0192 10 150	50	0192 12 150	50	0192 16 150	25
160	0192 10 160	50	0192 12 160	50		
180	0192 10 180	50	0192 12 180	25/50	0192 16 180	25
200	0192 10 200	25	0192 12 200	25	0192 16 200	25
220	0192 10 220	25	0192 12 220	25	0192 16 220	25
240	0192 10 240	25	0192 12 240	25	0192 16 240	25
260	0192 10 260	25	0192 12 260	25	0192 16 260	25
280	0192 10 280	25	0192 12 280	25	0192 16 280	1/25
300	0192 10 300	25	0192 12 300	1	0192 16 300	1/25
320			0192 12 320	1	0192 16 320	1
340			0192 12 340	1	0192 16 340	1
360			0192 12 360	1		
380			0192 12 380	1		
400			0192 12 400	1		

ORSY®-lagerfähig

A2 Rost			I						
Länge	Ø 6 mm	VE/St.	Ø 7 mm	VE/St.	Ø 8 mm	VE/St.	Ø 10 mm	VE/St.	
mm	SW 10		SW 12		SW 13		SW 17		
	ArtNr.		ArtNr.		ArtNr.		ArtNr.		
40	0193 6 40	100			01938 40	100			
45					01938 45	100			
50	01936 50	100			01938 50	100			
60	01936 60	100	01937 60	100	01938 60	100	0193 10 60	50	
70	01936 70	100			01938 70	100	0193 10 70	50	
80			01937 80	50	01938 80	100	0193 10 80	50	
90							0193 10 90	25	
100			01937 100	50	01938 100	50	0193 10 100	25	

ORSY®-lagerfähig

Stahl ther	misch verzinkt :	feuerverzink
Länge mm	Ø 7 mm SW 12 ArtNr.	VE/St.
60	01927 60	100
70	01927 70	100
80	01927 80	100
90	01927 90	100
100	01927 100	100
110	01927 110	100


Länge mm	Ø 7 mm SW 12 ArtNr.		VE/St.
120	01927	120	100
130	01927	130	100
150	01927	150	100
170	01927	170	100
190	01927	190	100

Sechskant-Holzschrauben und Kunststoff-Pilzdichtungen werden fast ausschließlich zum Befestigen von Welleternit-Platten auf Holzbindern verwendet. Feuerverzinkte Schrauben haben eine sehr gute Korrosionsbeständigkeit. Die Dicke der Zinkschicht ist bis zu zehnmal stärker als bei galvanisch aufgebrachten Überzügen. Die herstellbedingte Rauheit der Oberfläche ist ein Anzeichen für guten Schutz und größere Dicke der Zinkschicht.

ASSY® 3.0 KOMBI

d mm	l mm	lg mm	dh Antrieb	ArtNr. verzinkt, blau	VE/St.
	80		A	0184 208 80	
	100		-	0184 208 100	
	120			0184 208 120	
	140	-		0184 208 140	
	160	80		0184 208 160	
0.0	180	mm Antrieb 50 60		0184 208 180	7,
8,0	200			0184 208 200	75
	220		7,11	0184 208 220	
	240			0184 208 240	
	260	100	0184 208 2		
	280			0184 208 280	
	300			0184 208 300	
	80	50		0184 210 80	
-	100	60		0184 210 100	
	120	80		0184 210 120	
	140			0184 210 140	
	160			0184 210 160	
	180			0184 210 180	
	200			0184 210 200	
	220	100	6kt	0184 210 220	
10,0	240		1	0184 210 240	50
	260		AW® 40	0184 210 260	
	280			0184 210 280	
	300			0184 210 300	
	320			0184 210 320	
	340	120		0184 210 340	
	360			0184 210 360	
	380			0184 210 380	
	200 220 240 240 260 280 300 320 340 360 120		0184 210 400		

ORSY®-lagerfähig

ASSY® 3.0 Spanplattenschrauben sind für den Einsatz in Holzwerkstoffen optimiert. Bei Anwendungen in Kunststoffdübeln ist eine Reduzierung der Traglast möglich. Wir empfehlen daher, bei Anwendung in Kunststoffdübeln nur Schrauben ohne optimierte Gewindespitze (Bohrspitze, Gegengewinde, Ringgewinde, Wellenschliff, Schabenut usw.) zu verwenden, z.B. Dübelschrauben, Vor-Nr. 0157, 6-kt.-Holzschrauben DIN 571, Vor-Nr. 0192, oder Wüpofast®-Schrauben, Vor-Nr. 0186, 0198).

5/16" mit Magnet

Einsatzbereich:

ASSY® 3.0 Kombi mit 6-kt. Kopf und integriertem AW®40-Antrieb ist ideal für Verschraubungen im Element-, Holz und Passivhausbau des Holzbau-/Zimmereihandwerks

Vorteile:

Das asymmetrische gleitbeschichtete Grobgewinde mit Gegengewinde und Frässchaft führt zu 30% Zeitersparnis und einer geringeren Spaltneigung beim Verarbeiten. Der Kombikopf mit AW Antrieb besitzt Vielseitigkeit und eine hohe Kraftübertragung.

Spitze:

Veringerte Spaltgefahr durch Gegengewinde.

Gewinde:

Asymmetrische Grobgewinde mit scharfen Gewindegänge für kurze Einschraubzeiten.

Kunststoffgleitbeschichtung:

Ermöglicht leichtes Eindrehen durch die Reduzierung der Reibung.

Schaftfräser:

Das Frästeil nach dem Gewinde vermindert das Einschraubdrehmoment um 20%.

Konf:

Kombinierter 6-kt.-Kopf + AW®-Antrieb für eine hohe flexible Kraftübertragung.

Material:

Stahl gehärtet, verzinkt, blau passiviert

Hinweis:

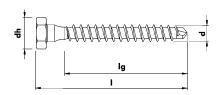
Art.-Nr. 0184 212 181 180/145 mm ist durch das verlängerte Gewinde ideal zur Kombination mit dem Transportankersystem.

Zubehör:

Bohrschrauber SB 13 SEC Art.-Nr 0702315 Bit für AW Antrieb Ar.-Nr. 0614 514 0 6-kt-Steckschlüssel

Scheiben:

DIN 436 Art.-Vornr. 0453.. DIN 440 Art.-Vornr. 0454..


SW	d Schraube	ArtNr.
12	8	0614 176 831
15	10	0614 176 832
17	12	0614 176 833

ASSY®PLUS VG KOMBI HOLZBAUSCHRAUBE

Nenndurch- messer (d)	Länge (I)	Gewinde- länge (lg)	Außenan- trieb	Kopfhöhe (k)	Innen- antrieb	ArtNr.	VE
6 mm	80 mm	71 mm	SW9	3 mm	AW25	0165 301 608	100
6 mm	100 mm	91 mm	SW9	3 mm	AW25	0165 301 610	100
8 mm	80 mm	67 mm	SW15	4,5 mm	AW40	0165 301 808	75
8 mm	100 mm	87 mm	SW15	4,5 mm	AW40	0165 301 810	75
8 mm	120 mm	107 mm	SW15	4,5 mm	AW40	0165 301 812	75
10 mm	100 mm	80 mm	SW17	5 mm	AW40	0165 301 010	50
10 mm	120 mm	100 mm	SW17	5 mm	AW40	0165 301 012	50
10 mm	140 mm	120 mm	SW17	5 mm	AW40	0165 301 014	50
10 mm	160 mm	140 mm	SW17	5 mm	AW40	0165 301 016	50
12 mm	120 mm	105 mm	SW19	5,5 mm	AW40	0165 301 212	50
12 mm	140 mm	118 mm	SW19	5,5 mm	AW40	0165 301 214	50
12 mm	160 mm	138 mm	SW19	5,5 mm	AW40	0165 301 216	50

ORSY-lagerfähig

AW-Antrieb - mehr Power

- Optimale Kraftübertragung
- Sehr guter Passsitz, schnelle Findung, keine Taumelbewegung
- Sicheres Ansetzen der Schraube, nahezu kein Herausdrehen des Bits

Gewinde

- Symmetrische Vollgewinde für hohe Tragfähigkeiten.
- Kunststoffgleitbeschichtung: Ermöglicht ein leichtes Eindrehen und verringert das Einschraubdrehmoment

Bohrspitze

- Sehr geringe zulässige Randabstände z.B. 3xd d = 8 mm 60 mm Träger
- Kein Vorbohren notwendig

Werkstoff

• Hochfester Stahl für hohe Bruchdrehmomente

Oberfläche

• Blau passiviert, A3K, Cr III, min. 8µm

Anleitung

Bei der Verschraubung in Laubhölzer ist entsprechend ETA-11/0190 vorzubohren.

Für eine individuelle Statikempfehlung können Sie die Würth-Holzbaubemessungsoftware (Online oder als Download zum Offline-Arbeiten) verwenden. Für einfache Standardanwendungen stehen Ihnen übersichtliche Berechnungstabellen unter www.wuerth.de/assy zur Verfügung.

Hinweis

Schraube nicht in direkt bewitterten Anwendungen, in Feuchträumen und chlorgashaltiger Atmosphäre einsetzen.

Es sind die Vorgaben der Europäisch technischen Zulassung zu beachten.

Die ASSYplus VG Kombi mit aufgeweiteten Schaftansatz ist für die 90° Befestigung von auf Scherung und Zug belasteten Stahl-Holz Verbindungen im Holzbau-/ Zimmereihandwerk einsetzbar. Durch die speziellen Eigenschaften sind kompakte montagefreundliche Stahl-Holz Anschlüsse herstellbar.

Stahl gehärtet, blau passiviert (A3K), Kombi Kopf, AW-Antrieb, Schaftfräser, Vollgewinde, Bohrspitze

Verbindet das Holz - statt es zu spalten

Vorteile

- Ideal zur Befestigung von bei überwiegend auf Scherung belasteten Stahlelementen an Holz
- Verringerte Anzahl von Schrauben durch eine hohe Tragfähigkeit auf Auszug und Scherung
- Idealer Sitz in Rundlöchern durch 6kant Kombi Kopf mit der integrierten Schaftaufweitung
- Verringerte Metallformate und Holzquerschnitte durch sehr geringe Randabstände (wie vorgebohrt)
- Leichter Abbund durch zulässige Positionierungsbohrungen
- Universell verwendbar durch Einschraubwinkel 0°-90°
- Zulassung für Laubholz, KERTO/LVL und Brettsperrholz und andere Holzwerkstoffe
- Verwendung in der Nutzungsklasse 1 und 2 gemäß EN 1995:2013

Kombi Kopf

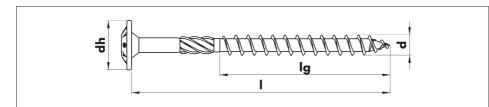
 Mit verstärktem Schaftansatz für hohe Kraftübertragung und Passgenauigkeit

Leistungsnachweis

ETA-11/0190

ETA-11/0190

ASSY® 3.0 SK



ASSY.

d mm	l mm	lg mm	dh mm	Schaft- fräser	Antrieb	ArtNr. verzinkt, gelb	VE/St.				
	30	20				0184 805 30					
	40	25				0184 805 40	1				
	50	30				0184 805 50	1				
	60	37				0184 805 60	1				
5.0	70	40	100	х	AV4/800	0184 805 70	100				
5,0	80	42	12,0	×	AW®30	0184 805 80	100				
	90	47		×		0184 805 90	1				
	100	50		х		0184 805 100	1				
	110	52		×		0184 805 110	1				
	120	62		х		0184 805 120	1				
	60	37		0184 806 60							
	70	42		x 0184 806 70		0184 806 70	1				
	80	50		×		0184 806 80	1				
	90	50		×		0184 806 90	1				
	100	60		×		0184 806 100	1				
	110			×		0184 806 110	1				
	120			×		0184 806 120	1				
	140	1	1.40	×	A144@00	0184 806 140	100				
6,0	160		14,0	×	AW®30	0184 806 160	100				
	180	7		×		0184 806 180	1				
	200	70		x		0184 806 200	1				
	220			×		0184 806 220	1				
	240	1		×		0184 806 240	1				
	260			×		0184 806 260	1				
	280			×		0184 806 280	1				
	300			×		0184 806 300	1				
	60					0184 808 60					
	80	50		х		0184 808 80	1				
	100	60		×		0184 808 100	1				
	120		-	х		0184 808 120	1				
8,0	140	1	22,0	Х	AW®40	0184 808 140	50				
	160	80		х		0184 808 160	1				
	180	1		x		0184 808 180	1				
	200	1		х		0184 808 200	1				

ORSY®-lagerfähig

Einsatzbereich:

ASSY® 3.0 SK mit großem Scheibenkopf ist speziell für das Treppenbau-/Holzbau-/Zimmereihandwerk für Verschraubungen im Treppen-, Element-, Holz- und Passivhausbau. Bei Laubholz ist entsprechend der ETA 11/0190 vorzubohren.

Spitze:

Die 34°-Spitze ermöglicht punktgenaues Ansetzen. Schraube mit Gegengewinde im Spitzenbereich, dadurch Spaltkräfte des Holzes v.a. im Randbereich stark reduziert. Das Einschraubdrehmoment ist deutlich geringer als bei herkömmlichen Spanplattenschrauben und wirkt sich positiv auf die Lebensdauer der Verarbeitungsmaschine sowie des Biteinsatzes aus.

Gewinde:

Durch das kunststoffgleitbeschichtete asymmetrische Grobgewinde – 30% Zeitersparnis beim Verarbeiten.

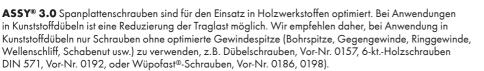
Schaftfräser:

Der Schaftfräser nach dem Gewinde vermindert das Einschraubdrehmoment um 20%.

Dünnschaft:

Der Dünnschaft ermöglicht eine spannungsfreie Verbindung ohne Zwischenräume.

Kopf:


Großer Scheibenkopf mit AW®-Antrieb

Material:

Stahl gehärtet, verzinkt, gelb

Hinweis:

Schraube nicht in direkt bewitterten Anwendungen, in Feuchträumen und chlorgashaltiger Atmosphäre einsetzen. Bei einer Verwendung in Außenbereich und Räumen, die kurzfristig oder ständiger hoher Feuchtigkeit ausgesetzt sind, setzen Sie bitte in diesen Fällen Edelstahlschraube ASSY® 3.0 SK A2 ein.

ASSY® 3.0 SK

ASSY

d	I	lg	dh	Schaft-	Antrieb	ArtNr.	VE/St.			
mm	mm	mm	mm	fräser		verzinkt, gelb				
	220			х		0184 808 220				
	240			х	0184 808 240					
	260			х		0184 808 260				
	280			х		0184 808 280 0184 808 300				
	300			x						
	320		0184 808 320	50						
	340			x		0184 808 340				
	360			×		0184 808 360				
8,0	380	100	22,0	x	AW®40	0184 808 380				
0,0	400		22,0	x	AW-40	0184 808 400				
	420			x		0184 808 420				
	440			x		0184 808 440				
	460			x		0184 808 460				
	480			x		0184 808 480	1			
	500			x		0184 808 500	1			
	520			x		0184 808 520	25			
	540			Х		0184 808 540				
	560			х		0184 808 560				
	100	60		x		0184 810 100				
	120		+	X		0184 810 120				
	140	80		X	_	0184 810 140	-			
	160		\dashv	X	_	0184 810 160	-			
	180	\dashv			_	0184 810 180	-			
	200	\dashv		X	_	0184 810 200	-			
		-		X	_		-			
	220	100		X	_	0184 810 220	-			
	240	_		Х	_	0184 810 240	50			
	260	_		Х	_	0184 810 260				
	280			Х		0184 810 280	_			
10,0	300		25,0	x	AW®50	0184 810 300				
	320	_		x	_	0184 810 320				
	340			X	0184 810 34					
	360			х		0184 810 360				
	380			х		0184 810 380				
	400	120		x		0184 810 400				
	420	120		x		0184 810 420				
	440			x		0184 810 440				
	460			x		0184 810 460	25			
	480			×		0184 810 480				
	500			x		0184 810 500				
	200	100		х		0184 812 200				
	120		1	Х		0184 812 220	1			
	240	7		Х		0184 812 240	1			
	260			x		0184 812 260				
	280	1		X		0184 812 280	1			
	300	120		x	_	0184 812 300	50			
	320	-		X		0184 812 320				
12,0	340	\dashv	29,0	X	AW®50	0184 812 340	-			
	360	\dashv				0184 812 360	-			
		+	+	X			-			
	380	-		X		0184 812 380				
	400	-		Х		0184 812 400	-			
	440	145		Х		0184 812 440	25			
	480	4		Х		0184 812 480				
	1.500	1								

Hinweis:

Schraube nicht in direkt bewitterten Anwendungen, in Feuchträumen und chlorgashaltiger Atmosphäre einsetzen. Bei einer Verwendung in Außenbereich und Räumen, die kurzfristig oder ständiger hoher Feuchtigkeit ausgesetzt sind, setzen Sie bitte in diesen Fällen Edelstahlschraube ASSY® 3.0 SK A2 ein.

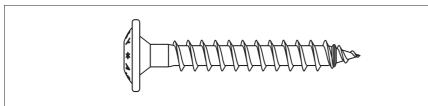
ETA-11/0190

0184 812 520

ASSY® 3.0 Spanplattenschrauben sind für den Einsatz in Holzwerkstoffen optimiert. Bei Anwendungen in Kunststoffdübeln ist eine Reduzierung der Traglast möglich. Wir empfehlen daher, bei Anwendung in Kunststoffdübeln nur Schrauben ohne optimierte Gewindespitze (Bohrspitze, Gegengewinde, Ringgewinde, Wellenschliff, Schabenut usw.) zu verwenden, z.B. Dübelschrauben, Vor-Nr. 0157, 6-kt.-Holzschrauben DIN 571, Vor-Nr. 0192, oder Wüpofast®-Schrauben, Vor-Nr. 0186, 0198).

ORSY®-lagerfähig

520



ASSY® 3.0 SK STAHL/A2 VOLLGEWINDE

d mm	l mm	lg mm	dh mm	Schaft- fräser	Antrieb	ArtNr. Stahl, blau passiviert	VE St.
4.0	40	36	1.4		AW® 30	0184 006 40	100
6,0	50	45	14			0184 006 50	100
0.0	40	32	00	nein	AVA (0.00	0184 008 40	50
8,0	50	40	22		AW® 40	0184 008 50	50

ORSY®-lagerfähig

d mm	l mm	lg mm	dh mm	Schaft- fräser	Antrieb	ArtNr. Edelstahl A2	VE St.
8,0	40	32	18.9	:-	AW® 40	0181 808 40	100
0,0	50	42	10,9	nein	AW 40	0181 808 50	100

ORSY®-lagerfähig

ASSY® 3.0 Spanplattenschrauben sind für den Einsatz in Holzwerkstoffen optimiert. Bei Anwendungen in Kunststoffdübeln ist eine Redu-zierung der Traglast möglich. Wir empfehlen daher, bei Anwendung in Kunststoffdübeln nur Schrauben ohne optimierte Gewindespitze

(Bohrspitze, Gegengewinde, Ringgewinde, Wellenschliff, Schabenut usw.) zu verwenden, z.B. Dübelschrauben, Vor-Nr. 0157, 6-kt.-Holz-schrauben DIN 571, Vor-Nr. 0192, oder Wüpofast®-Schrauben, Vor-Nr. 0186, 0198)

Die Einsatzbereiche der verschiedenen Edelstähle können Sie der nachfolgenden Tabelle der ISER (Informationsstelle Edelstahl Rostfrei, Merkblatt 828) entnehmen. **Rostfreie Edelstähle (z.B. Werkstoff**-Nr. 1.4016) werden dort für den Einsatz im atmosphärischen Bereich nur für die Anwendung in ländlicher Umgebung, und auch hier nur sehr eingeschränkt, empfohlen.

Wir empfehlen deshalb, nur austenitische Edelstähle für den Einsatz im Freien, unter Berücksichtigung der Umgebungsbedingungen, zu verwenden. Der Edelstahl A4 (0169 005 ...) eignet sich im Besonderen für den Einsatz in Industrieatmosphäre sowie für die Anwendung in Meeresnähe

Stahlsorte Kurzname			Umgebung											
			Land		Stadt			Industrie			Mee	Meeresnähe		
	Werkstoff-Nr.		N	M	Н	N	M	н	N	M	Н	N	M	Н
X1NiCrMoCu25-20-5	1.4539	Würth HCR (0159 9)	х	х	х	х	х	x	x	x	+	х	x	+
X5CrNiMo17-12-2	1.4401/1.4578	Würth A4 (0169 005)	х	х	х	х	+	+	+	+	(+)	+	+	(+)
X5Cr-Ni18-10	1.4301/1.4567	Würth A2 (0166 105)	+	+	+	+	+	(+)	(+)	(+)	-	+	(+)	-
X6Cr17	1.4016	viele Wettbewerber	(+)	(+)	(+)	(+)	-	-	(+)	-	-	-	-	-

Nichtrostende Stähle für unterschiedliche Umgebungsbedingungen (www.edelstahl-rostfrei.de, Merkblatt 828)

- N = niedrigste Korrosionsbelastung innerhalb der jeweiligen Umgebung.gekennzeichnet z.B. durch niedrige Temperaturen und geringe Luft-feuchtigkeit
- M = mittlere Korrosionsbelastung innerhalb der jeweiligen Umgebung
- höhere Korrosionsbelastung innerhalb der jeweiligen Umgebung,
 z.B. durch andauernde hohe Luftfeuchtigkeit, hohe Umgebungstemperaturen, besonders aggressive Luftverunreinigungen erfüllt grundsätzlich die Anforderungen, es könnten jedoch auch
- kostengünstigere Stähle ausreichen
- wahrscheinlich beste Werkstoffwahl im Hinblick auf Korrosionsbeständiakeit und Kosten
- (+) = ausreichendes Verhalten, sofern bestimmte Vorsichtsmaßnahmen getroffen werden, insbesondere sind glatte Oberflächen ausführungen und regelmäßiges Reinigen erforderlich voraussichtlich starke Korrosion

Die ASSY® 3.0 SK mit großem Scheibenkopf und Vollgewinde ist speziell für die Verschraubung von **Blechformteilen an Holzelemente** z.B. Pfostenverschraubung.

Großer Scheibenkopf mit AW®-Antrieb.

- Bessere Kraftübertragung.
- Optimale Zentrierung.
- Hohe Standzeit.
- Die gleichmäßige Kraftverteilung vermeidet Beschädigungen der Oberflächen-

Gewinde:

- Vollgewinde für hohe Tragkraft.
- Leichtes Eindrehen durch asymmetrisches Einganggewinde.

- Punktgenaues Ansetzen durch die 30°-Spitze.
- Schraube mit Ringgewinde im Spitzenbereich, dadurch Spaltkräfte des Holzes v.a. im Randbereich stark reduziert.

Material:

Stahl, blau passiviert (A2K): Innenraumbereich Feuchtraum (Nutzungs-

Austenitischer Edelstahl A2 (1.4301, 1.4567): Außenbereich, Feuchträume und Räume mit salzhaltiger Atmosphäre (Nutzungsklasse 3).

Anwendungsgebiet:

Pfostenschraube, Befestigung Blechformteile.

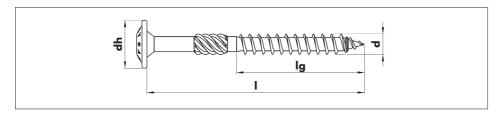
Hinweise:

Austenitischer Edelstahl zeichnet sich durch eine hohe Korrosionsbeständigkeit gegen aggressive Industrieluft, Seeklima, Leitungs-, Fluss-, Grubenund Salzwasser sowie gerbsäurehaltigen Hölzern aus. Es ist bedingt säurebeständig und ungeeignet in chlorgashaltiger Atmosphäre.

ETA-11/0190

Zusatzartikel:

AW®-Bit, Art.-Nr. 0614 250 102


Akku Bohrschrauber z.B. Art.-Nr. 0700 655 2

Pfostenträger

z. B. Art.-Nr. 0681 091 000

ASSY® 3.0 SK A2 TEILGEWINDE

d mm	l mm	lg mm	dh	Schaft- fräser	Antrieb	ArtNr. A2	VE/St.
	60	37				0181 806 60	
	70	42				0181 806 70	
	80	50				0181 806 80	
6,0	90	30	14,0		AW®30	0181 806 90	100
	100	60				0181 806 100	
	120	70				0181 806 120	
	140	70				0181 806 140	
	80	50				0181 808 80	
	100	60				0181 808 100	
	120					0181 808 120	
	140					0181 808 140	
	160	80		х		0181 808 160	
	180			х		0181 808 180	
	200			х		0181 808 200	
	220			х		0181 808 220	
8,0	240		18,9	х	AW®40	0181 808 240	50
	260			х		0181 808 260	
	280			х		0181 808 280	
	300	100		х		0181 808 300	
	320	100		х		0181 808 320	
	340			х		0181 808 340	
	360			х		0181 808 360	1
	380			х		0181 808 380	
	400			х		0181 808 400	1

ORSY®-lagerfähig

Die Einsatzbereiche der verschiedenen Edelstähle können Sie der nachfolgenden Tabelle der ISER (Informationsstelle Edelstahl Rostfrei, Merkblatt 828) entnehmen. **Rostfreie Edelstähle (z.B. Werkstoff**-Nr. 1.4016) werden dort für den Einsatz im atmosphärischen Bereich nur für die Anwendung in ländlicher Umgebung, und auch hier nur sehr eingeschränkt, empfohlen.

Wir empfehlen deshalb, nur austenitische Edelstähle für den Einsatz im Freien, unter Berücksichtigung der Umgebungsbedingungen, zu verwenden. Der Edelstahl A4 (0169 005 ...) eignet sich im Besonderen für den Einsatz in Industrieatmosphäre sowie für die Anwendung in Meeresnähe

Stahlsorte			Umgebung											
Kurzname			Land		Stadt			Industrie		Meeresnähe				
	Werkstoff-Nr.		N	M	Н	N	M	н	N	M	Н	N	M	н
X1NiCrMoCu25-20-5	1.4539	Würth HCR (0159 9)	х	х	х	х	х	х	х	х	+	х	х	+
X5CrNiMo17-12-2	1.4401/1.4578	Würth A4 (0169 005)	х	х	х	х	+	+	+	+	(+)	+	+	(+)
X5Cr-Ni18-10	1.4301/1.4567	Würth A2 (0166 105)	+	+	+	+	+	(+)	(+)	(+)	-	+	(+)	-
X6Cr17	1.4016	viele Wettbewerber	(+)	(+)	(+)	(+)	-	-	(+)	-	-	-	-	-

Nichtrostende Stähle für unterschiedliche Umgebungsbedingungen (www.edelstahl-rostfrei.de, Merkblatt 828)

- N = niedrigste Korrosionsbelastung innerhalb der jeweiligen Umgebung.gekennzeichnet z.B. durch niedrige Temperaturen und geringe Luft-feuchtigkeit
- = mittlere Korrosionsbelastung innerhalb der jeweiligen Umgebung
- höhere Korrosionsbelastung innerhalb der jeweiligen Umgebung,
 z.B. durch andauernde hohe Luftfeuchtigkeit, hohe Umgebungstemperaturen, besonders aggressive Luftverunreinigungen erfüllt grundsätzlich die Anforderungen, es könnten jedoch auch
- kostengünstigere Stähle ausreichen
- wahrscheinlich beste Werkstoffwahl im Hinblick auf Korrosionsbeständiakeit und Kosten
- (+) = ausreichendes Verhalten, sofern bestimmte Vorsichtsmaßnahmer getroffen werden, insbesondere sind glatte Oberflächen ausführungen und regelmäßiges Reinigen erforderlich voraussichtlich starke Korrosion

Einsatzbereich:

Die ASSY® 3.0 SK A2 mit großem Scheibenkopf ist speziell für das Photovoltaik-/Holzbau-/Zimmereihandwerk für Verschraubungen im Außenbereich, für Feuchträume und salzhaltige Atmosphare.

Spitze:

Die 30°-Spitze ermöglicht punktgenaues Ansetzen. Schraube mit Ringgewinde im Spitzenbereich, dadurch Spaltkräfte des Holzes v.a. im Randbereich stark reduziert. Das Einschraubdrehmoment ist deutlich geringer als bei herkömmlichen Spanplattenschrauben und wirkt sich positiv auf die Lebensdauer der Verarbeitungsmaschine, sowie des Biteinsatzes aus.

Gewinde:

Leichtes Eindrehen durch asymmetrisches Einganggewinde.

Schaftfräser:

Der Schaftfräser nach dem Gewinde vermindert das Einschraubdrehmoment um

Kopf:

Großer Scheibenkopf mit AW®-Antrieb

- Bessere Kraftübertragung
- Optimale Zentrierung
- Hohe Standzeit
- Die gleichmäßige Kraftverteilung vermeidet Beschädigungen der Oberflächenbeschichtung

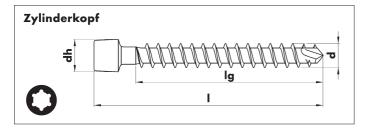
Material:

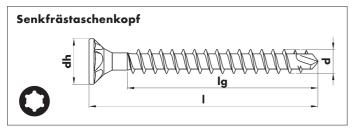
Korrosionsbeständiger austenitischer Edelstahl A2 (1.4301, 1.4567)

Hinweis:

Austenitischer Edelstahl zeichnet sich durch eine hohe Korrosionsbeständigkeit gegen aggresive Industrieluft, Seeklima, Leitungs Fluss-, Gruben und Salzwasser sowie gerbsäurehaltigen Hölzern aus. Es ist bedingt säurebeständig und ungeeignet in chlorgashaltiger Atmosphäre.

ASSY® 3.0 Spanplattenschrauben sind für den Einsatz in Holzwerkstoffen optimiert. Bei Anwendungen in Kunststoffdübeln ist eine Reduzierung der Traglast möglich. Wir empfehlen daher, bei Anwendung in Kunststoffdübeln nur Schrauben ohne optimierte Gewindespitze (Bohrspitze, Gegengewinde, Ringgewinde, Wellenschliff, Schabenut usw.) zu verwenden, z.B. Dübelschrauben, Vor-Nr. 0157, 6-kt.-Holzschraube DIN 571, Vor-Nr. 0192, oder Wüpofast®-Schrauben, Vor-Nr. 0186,




ETA-11/0190

VOLLGEWINDESCHRAUBE ASSY®PLUS VG

ASSY

Zubehör:

Bohrschrauber BS 13 SEC Art.-Nr. 0702 315

Bits mit AW®-Antrieb

Art.-Nr. 0614 ...

Akku Schlagbohrschrauber BS-28-A Combo **Art.-Nr. 0700 617 2**

Elektro-Schrauber S 12 ASSY® Art.-Nr. 0702 012 1

VG-Fix-Setzvorrichtung
Art.-Nr. 0165 300 ...

Winkelscheibe 45°
Art.-Nr. 0457 700 482
Art.-Nr. 0457 700 484

Einsatzbereich:

ASSY®plus VG ist eine universell im Neubau und Sanierungsbereich einsetzbare Vollgewindeschraube für den Ingenieurholzbau, das Zimmereihandwerk und den Holzhaus- und Elementbau. Kraftschlüssige Anschlüsse, Querdruck- oder Querzugverstärkung.

Vorteile

- Sehr geringe Randabstände
- Vorbohren optional zulässig
- hohe Tragfähigkeit
- Große Produktpalette von 6 x 80 bis 14 x 1500
- Einschraubwinkel 30°-90° möglich
- Auch für KERTO/LVL und Brettsperrholz zugelassen

Bohrspitze:

Sehr geringe zulässige Randabstände z.B. $3xd \rightarrow d = 8 \text{ mm} \rightarrow 60 \text{ mm}$ Träger; kein Vorbohren notendig, kein Aufplatzen und Aufreißen des Holzes.

Gewinde:

Symmetrische Vollgewinde für hohe Tragfähigkeiten. Kunststoffgleitbeschichtung: Ermöglicht ein leichtes Eindrehen und verringert das Einschraubdrehmoment.

Kopf:

Zylinderkopf für den universellen Einsatz

- Verringerte Spaltwirkung durch kleinen Kopfdurchmesser
- Schraube kann tief in das Holz versenkt werden.

Senk-/ Senkfrästaschenkopf

- Speziell für Schraubverbindungen in Kombination mit Stahlbauteilen. Empfehlung → Kombination mit Winkelscheibe 45°.
- Ideal zur Querdruckverstärkung im Auflagerbereich.

Außen-TX

- Ideal für sehr hohe Kraftübertragungen
- mit kleiner integrierter Scheibe für Metallanschlüsse

AW®-Antrieb

- Bessere Kraftübertragung
- Optimale Zentrierung
- Hohe Standzeit
- Die gleichmäßige Kraftverteilung vermeidet Beschädigungen der Oberflächenbeschichtung

Material:

Hochfester Stahl für hohe Bruchdrehmomente. Verzinkt, gelb oder blau passiviert.

ETA-11/0190

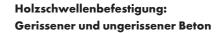
VOLLGEWINDESCHRAUBE ASSY®PLUS VG

ASSY

		Zyline	derkop	of				Senk	- und Se	enkfrä	staschenko	ppf	
d mm	l mm	lg mm	dh mm	k mm	Antrieb	ArtNr. verzinkt, gelb	VE/St.	lg mm	dh mm	k mm	Antrieb	ArtNr. verzinkt, blau passiviert	VE/St.
	80	67				0165 36 80		67				0165 46 80	
	100	87				0165 36 100		87				0165 46 100	
	120	107				0165 36 120		107	7			0165 46 120	1
	140	123				0165 36 140		123	12,0	4,2	AW® 30	0165 46 140	100
4.0	160	143		4.7	A VA / @ 2 O	0165 36 160	100	143				0165 46 160	
5,0	180	163	8,2	4,7	AW® 30	0165 36 180	100	163				0165 46 180	
	200	183				0165 36 200		183				0165 46 200	
	220	203				0165 36 220							
	240	223				0165 36 240							
	260	243				0165 36 260	1						
	120	101				0165 38 120		101				0165 48 120	
	140	121				0165 38 140	50	121	1			0165 48 140	
	160	141				0165 38 160	50	141				0165 48 160	1
	180	161				0165 38 180	1	161	1	_		0165 48 180	
	200	181				0165 38 200		181		4,6mm		0165 48 200	1
	220	201				0165 38 220		201				0165 48 220	75
	240	221				0165 38 240	1	221				0165 48 240	1
	260	241		7.5		0165 38 260	75	241	1	Jdo		0165 48 260	
3,0	280	261	10,0	7,5	AW® 40	0165 38 280	1	261	15,0	lenk	AW® 40	0165 48 280	
	300	275				0165 38 300		275	-	asch		0165 48 300	
_	330	305				0165 38 330		305	-	ästa		0165 48 330	
	380	355				0165 38 380	50	355	-	Senkfrästaschenkopf k		0165 48 380	50
	430	405	-			0165 38 430		405	-			0165 48 430	
	480	445	-			0165 38 480	25	445	-			0165 48 480	_
	530	495				0165 38 530		495	-			0165 48 530	25
	580	545				0165 38 580		545	-			0165 48 580	
	120	97				0165 310 120		97				0165 410 120	
	140	117				0165 310 140	+	117	-			0165 410 140	1
	160	137				0165 310 160	+	137	-			0165 410 160	1
	180	157				0165 310 180	+	157	-			0165 410 180	1
	200	177				0165 310 200	+	177	-			0165 410 200	1
	220	197				0165 310 220	+	197	-			0165 410 220	1
	240	217	-				+	217	-			0165 410 240	
	-	237	-			0165 310 240	50		+				50
	260	+	-			0165 310 260	50	237	-	.5mm		0165 410 260	50
	280	257	-			0165 310 280	+	257	-	5,5n		0165 410 280	-
100	300	272	125	0.0	AWREA	0165 310 300	+	272	20.0	ll l	AW® 50	0165 410 300	-
10,0	320	292	13,5	8,0	AW® 50	0165 310 320	+	292	20,0	Senkkopf k	AW® 50	0165 410 320	-
	340	312	-			0165 310 340	+	312	-	- Jkko		0165 410 340	1
	360	332	-			0165 310 360	-	332	-	Ser		0165 410 360	
	380	352	-			0165 310 380	-	352	-			0165 410 380	
	400	372	-			0165 310 400	-	372	-			0165 410 400	
	430	402	_			0165 310 430	-	402	-			0165 410 430	-
	480	442	_			0165 310 480	_	442	-			0165 410 480	-
	530	492	-			0165 310 530	25	492	-			0165 410 530	25
	580	542	_			0165 310 580	25	542	_			0165 410 580	1
	600		_				-	562				0165 410 600	1
	650	612				0165 310 650		612				0165 410 650	

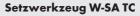
VOLLGEWINDESCHRAUBE ASSY®PLUS VG

ASSY


	Zylinderkopf								frästas	chenko	pf		
d mm	l mm	lg mm	dh mm	k mm	Antrieb	ArtNr. verzinkt, gelb	VE/St.	lg mm	dh mm	k mm	Antrieb	ArtNr. verzinkt, blau passiviert	VE/St.
	700	662				0165 310 700		662		Jd III		0165 410 700	
10,0	750	712	13,5	8,0		0165 310 750	25	712	20,0	Senkkopf k = 5,5mm		0165 410 750	25
	800	762				0165 310 800		762]	<u>8</u> =		0165 410 800	
	120							94				0165 412 120	
	140							114				0165 412 140	
	160							134		E		0165 412 160	
	180							154		6,7 1		0165 412 180	
	200				AW® 50			174		II	AW® 50	0165 412 200	
	220				AW® 50			194		l pf	AW® 50	0165 412 220	50
12,0	240							214	22,5	l sk		0165 412 240	
	260							219		sche		0165 412 260	
	280							239		ista		0165 412 280	
	300							259		Senkfrästaschenkopf k		0165 412 300	
	380							339		Sen		0165 412 380	
	480							439	1			0165 412 480	25
	600							559	1			0165 412 600	25

		Auße	ntorx/	E12			
d mm	l mm	lg mm	dh mm	k mm	Antrieb	ArtNr. verzinkt, blau passiviert	VE/St.
	800	758				0165 314 800	
	850	803				0165 314 850	
	900	853		E		0165 314 900	15
	950	903		= 10 mm		0165 314 950] 13
	1000	953				0165 314 100	
14,0	1050	1003	18,5	×	E12	0165 314 105	
	1100	1053		nto		0165 314 110	
	1200	1153		Außentorx k		0165 314 120	
	1300	1253		⋖		0165 314 130	10
	1400	1353				0165 314 140	
	1500	1453				0165 314 150	

SCHRAUBANKER W-SA TC TIMBER CONNECT


W-SA TC

Stahl verzinkt

Ø 7,5 x 100

Ø 10 x 130

Ø 12 x 160

Ø 7,5: TX 30

Ø 10: TX 45

Ø 12: TX 50

Leistungsnachweise

Zulassungen

Allg. bauaufsichtliche Zulassung für gerissenen und ungerissenen Beton

1. Einsatzbereiche

- Holzschwellenbefestigung im gerissenen und ungerissenen Beton
- Der Schwellenanker darf, mit allgemeiner bauaufsichtlicher Zulassung, in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206-1:2001-07 verwendet werden
- Verankerung mit allgemeiner bauaufsichtlicher Zulassung im gerissenen Beton (Betonzugzone) und im ungerissenen Beton (Betondruckzone)
- Der Schwellenanker darf nur für Bauteile in geschlossenen Räumen wie z.B. Wohnungen, Büroräume, Schulen, Krankenhäusern, Verkaufsstätten verwendet
- Der Schwellenanker darf zum Anschluss folgender Holzarten verwendet werden:
- Vollholz aus Nadelholz mindestens der Sortierklasse S10 nach **DIN 4074-1**
- Brettschichtholz nach DIN 1052
- Balkenschichtholz mindestens der Sortierklasse S10 nach allgemeiner bauaufsichtlicher Zulassung
- Furnierschichtholz nach allgemeiner bauaufsichtlichen Zulassung
- Brettsperrholz nach allgemeiner bauaufsichtlichen Zulassung

2. Vorteile

- Hohe übertragbare Zug- und Querlasten
- Unsichtbare Schwellenbefestigung: Der kleine Schraubenkopf kann im Holzbalken versenkt werden
- Pro Schraubendurchmesser sind mehrere Befestigungshöhen möglich (z.B. W-SA TC 12 x 160 : t_{fix} = 80 mm bis 300 mm)
- Keine Abhängigkeit der Lasten von der Anbauteildicke
- Durchsteckmontage
- Schnelle und einfache Montage: Der Schwellenanker kann mit dem Tangential-Schlagschrauber ESS 1/2", Art. 0702 317 0, gesetzt werden
- Sofort belastbar keine Wartezeiten
- Nahezu keine Spreizwirkung, dadurch können kleine Rand- und Achsabstände eingehalten werden
- Komplette, einfache und schnelle Demontage

3. Eigenschaften

- Verankerung durch Formschluss
- Beim Eindrehen des Schwellenankers in das vorgebohrte Bohrloch schneiden sich die sägezahnartig ausgebildeten Gewindegänge in den Beton ein
- Allgemeine bauaufsichtliche Zulassung: Z-21.1-1917

Holzanschluss: Bemessung nach DIN 1052:2008-12 Betonanschluss: Bemessung nach ETAG 001, Anhang C

Setzanweisung

Der Schraubanker ist richtig gesetzt, wenn die Markierung [Setzwerkzeug] mit der Oberfläche bündig ist

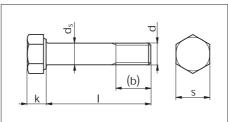
SCHRAUBANKER W-SA TC TIMBER CONNECT

02.4

Dübel-Du	urchmesser [mm]		7,5	10	12
Randbed nach DIN	<mark>lingungen</mark> 1052		Bei den ermittelten Lastw Holzart und Holzfestigkei Nutzungsklasse 1 Lasteinwirkung: Ständig	erten wurden folgende Rand t: Nadelholz C24	bedingungen berücksichtigt
Zul. zentrische Zuglast ¹⁾ eines Einzeldübels ohne Randeinfluss	N _{zu!} [kN] (gerissener Beton C20/25, s ≥ 3 h _{ef} , c ≥ 1,5 h _{ef}) Verankerungsgrund: Beton C20/25 Anbauteil: Nadelholz C24	N _{zul} [kN]	0,992)	2,02)	3,162)
Zul. Querlast 1) eines Einzeldübels ohne Randeinfluss	V _{zu1} [kN] (gerissener Beton C20/25, c≥ 10 h _{ef}) Verankerungsgrund: Beton C20/25	t _{fix} [mm] = 40 t _{fix} [mm] = 60 t _{fix} [mm] = 80 t _{fix} [mm] = 100 t _{fix} [mm] = 150	0,98 0,98 0,98 0,98 0,98	- 1,53 1,53 1,53	- - 2,28 2,28
دن. د eines Eir ohne Rc	Anbauteil: Nadelholz C24	$t_{fix} [mm] = 130$ $t_{fix} [mm] = 200$ $t_{fix} [mm] = 250$ $t_{fix} [mm] = 300$	- - -	1,53 1,53 - -	2,28 2,28 2,28 2,28 2,28
Kennwe	erte				
Minimale Achsabst	er Achsabstand tand	s _{min} [mm] s _{cr,N} [mm]	40 120	50 142,5	60 163,5
Minimale Randabs	er Randabstand	c _{min} [mm] c _{cr,N} [mm]	40 60	50 71,3	60 81,8
Mindest	pauteildicke	h _{min} ≥ [mm]	100	115	125
Bohrerne	Verankerungstiefe enn-Ø	h _{ef} [mm] d ₀ [mm]	6,0	47,5 8,0	54,5 10,0
Bohrloch		d _{cut} ≤ [mm] h ₁ ≥ [mm]	6,4 65 55	8,45 75 65	10,45 85 75
Durchga	es Dübels im Bohrloch ngsloch im ießenden Holzbauteil	h _{nom} ≥ [mm] d _{0,w} = [mm]	6,0	8,0	10,0
Dübelal	bmessungen				
W-SA TC			7,5	10	12
Gesamtl	änge	l [mm]	100	130	160
	festigungshöhe	t _{fix} [mm]	40150	60200	80300
Schraube W-SATC Stahl verzii Ø 7,5 TX 3 Ø 10 TX 4 Ø 12 TX 5	anker Timber Connect, nkt 30 5	ArtNr.	W-SA TC 7,5 x 100	W-SA TC 10 x 130	W-SA TC 12 x 160
Verpack	ungseinheit	VE [Stück]	100	50	25
	kzeug Bezeichnung	Aut No	Bezeichnung: H 43603-T30	Bezeichnung: H 47095-T45	Bezeichnung: H 43605-T50
Setzwerl Vernack	kzeug ungseinheit	ArtNr. VE [Stück]	0901 575 001	0901 510 002	0901 512 001
Tangenti		ArtNr. VE [Stück]	0702 317 0		-
					ORSY®-lagerf

ORSY®-lagerfähig

Leistungsdaten



¹⁾ Es sind die in der Zulassung geregelten Teilsicherheitsbeiwerte der Widerstände sowie ein Teilsicherheitsbeiwert der Einwirkungen von yF = 1,4 berücksichtigt. Bei der Kombination von Zug- und Querlasten, bei Randeinfluss und Dübelgruppen beachten Sie bitte die Leitlinie für die europäische technische Zulassung (ETAG) Anhang C.
²⁾ Zugelassener Wert enthält die Versagensart "Kopfdurchzug" durch das Holzanbauteil "Nadelholz C24" nach DIN 1052:2008-12.

HV-GARNITUREN

Stahl 10.9

VE

Ge	wØ d		M12	M16	M20	M22	M24	M27	M30	M36
(b)	Hilfsmaß	mm	23	28	33	34	39	41	44	52
ds	Nennmaß	mm	12	16	20	22	24	27	30	36
k	Nennmaß	mm	8	10	13	14	15	17	19	23
s	max.	mm	22	27	32	36	41	46	50	60

Gew.-Ø Länge

GewØ	Länge I	Stahl 10.9 ArtNr.	VE St.
	mm		
	30	0079 412 30	
	35	0079 412 35	
	40	0079 412 40	
	45	0079 412 45	100/1
	50	0079 412 50	
	55	0079 412 55	
	60	0079 412 60	
	65	0079 412 65	
	70	0079 412 70	
	75	0079 412 75	
	80	0079 412 80	
	85	0079 412 85	
	90	0079 412 90	
	95	0079 412 95	
	100	0079 412 100	
1410	105	0079 412 105	
M12	110	0079 412 110	50/1
	115	0079 412 115	
	120	0079 412 120	
	125	0079 412 125	
	130	0079 412 130	
	135	0079 412 135	
	140	0079 412 140	
	145	0079 412 145	
	150	0079 412 150	
	155	0079 412 155	
	160	0079 412 160	
	165	0079 412 165	
	170	0079 412 170	25/1
	175	0079 412 175	25/1
	180	0079 412 180	
	190	0079 412 190	
	35	0079 416 35	
	40	0079 416 40	
M16	45	0079 416 45	50/1
14110	50	0079 416 50	30/1
	55	0079 416 55	
	60	0079 416 60	

d	ı	ArtNr.	St.
	mm		
	65	0079 416 65	
	70	0079 416 70	
	75	0079 416 75	
	80	0079 416 80	
	85	0079 416 85	
	90	0079 416 90	
	95	0079 416 95	
	100	0079 416 100	
	105	0079 416 105	
	110	0079 416 110	
	115	0079 416 115	
	120	0079 416 120	
M16	125	0079 416 125	25/1
10010	130	0079 416 130	25/1
	135	0079 416 135	
	140	0079 416 140	
	145	0079 416 145	
	150	0079 416 150	
	155	0079 416 155	
	160	0079 416 160	
	165	0079 416 165	
	170	0079 416 170	
	175	0079 416 175	
	180	0079 416 180	
	190	0079 416 190	
	200	0079 416 200	
	40	0079 420 40	
	45	0079 420 45	
	50	0079 420 50	
	55	0079 420 55	
	60	0079 420 60	
	65	0079 420 65	
M20	70	0079 420 70	OF /1
10120	75	0079 420 75	25/1
	80	0079 420 80	
	85	0079 420 85	
	90	0079 420 90	
	95	0079 420 95	
	100	0079 420 100	
	105	0079 420 105	

nach DIN EN 14399-4

Hochfeste vorspannbare Garnituren für Schraubenverbindungen im Metallbau

- System HV
- k-Klasse K1
- Festigkeitsklasse 10.9
- Stahl feuerverzinkt

Für Schraubenverbindungen in Stahl- und Metallbau-konstruktionen.

HV-Garnituren sind für die Verwendung in Scher-/Lochleibungsverbindungen, Zugverbindungen sowie gleitfeste Verbindungen der Kategorien A-E nach DIN EN 1993-1-8 für vorgespannte und nicht vorgespannte Verbindungen geeignet.

HV-Schrauben nach DIN EN 14399-4 (früher DIN 6914) werden mit HV-Muttern nach DIN EN 14399-4 (früher DIN 6915) und Scheiben nach DIN EN 14399-6 (früher DIN 6916), DIN 6917 oder DIN 6918 verwendet.

"Es sind nur komplette Garnituren (Schrauben, Muttern und Scheiben) eines Herstellers zu verwenden." (Auszug aus der DIN EN 1993-1-8/NA:2010-12)

Die Ausführung von Stahlbauten mit HV-Garnituren ist in der DIN EN 1090-2 und der DIN EN 1993-1-8/NA geregelt.

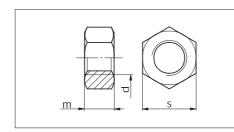
HV-Schrauben mit großen Schlüsselweiten:

- Große Unterkopffläche
 - geringere Flächenpressung
 - geringeres Setzen
- Großer Unterkopfradius
 - geringere Kerbwirkung
 - bessere Dauerschwingfestigkeit
- Definierte Reibeigenschaften
 - ermöglicht planmäßiges Vorspannen
- Chargenkennzeichen auf dem Produkt
 - Damit darf auf die Forderung einer Abnahmeprüfbescheinigung 3.1 verzichtet werden. (siehe Tab.1 DIN EN 1090-2:2011-10)
- CE-Zeichen
 - Geregeltes Bauprodukt

HV-GARNITUREN

 ϵ

GewØ	Länge I mm	Stahl 10.9 ArtNr.	VE St.
	110	0079 420 110	
	115	0079 420 115	
	120	0079 420 120	
	125	0079 420 125	
	130	0079 420 130	25/1
	135	0079 420 135	
	140	0079 420 140	
	145	0079 420 145	
	150	0079 420 150	
	155	0079 420 155	
M20	160	0079 420 160	
14120	165	0079 420 165	
	1 <i>7</i> 0	0079 420 170	15/1
	1 <i>75</i>	0079 420 175	13/1
	180	0079 420 180	
	190	0079 420 190	
	200	0079 420 200	
	210	0079 420 210	
	220	0079 420 220	
	230	0079 420 230	10/1
	240	0079 420 240	
	250	0079 420 250	
	50	0079 422 50	
	55	0079 422 55	
	60	0079 422 60	
	65	0079 422 65	25/1
	70	0079 422 70	
	75	0079 422 75	
	80	0079 422 80	
M22	85	0079 422 85	
	90	0079 422 90	
	95	0079 422 95	
	100	0079 422 100	15/1
	105	0079 422 105	15/1
	110	0079 422 110	
	115	0079 422 115	
	120	0079 422 120	
	50	0079 424 50	
	55	0079 424 55	
	60	0079 424 60	
	65	0079 424 65	25/1
	70	0079 424 70	,
	75	0079 424 75	
	80	0079 424 80	
	85	0079 424 85	
	90	0079 424 90	
M24	95	0079 424 95	
	100	0079 424 100	
	105	0079 424 105	15/1
	110	0079 424 110	
	115	0079 424 115	
	120	0079 424 120	
	125	0079 424 125	
	130	0079 424 130	10/1
	135	0079 424 135	. 5/ 1
	100	00/7 727 100	


GewØ d	Länge I	Stahl 10.9 ArtNr.	VE St.
	mm		
	140	0079 424 140	-
	145	0079 424 145	-
	150	0079 424 150	
	155	0079 424 155	-
	160	0079 424 160	
	165	0079 424 165	
	170	0079 424 170	-
M24	175	0079 424 175	10/1
	180	0079 424 180	·
	190	0079 424 190	-
	200	0079 424 200	-
	210	0079 424 210	-
	220	0079 424 220	-
	230	0079 424 230	-
	240	0079 424 240	-
	250	0079 424 250	
	60	0079 427 60	-
	65	0079 427 65	1.5/3
	70	0079 427 70	15/1
	75	0079 427 75	-
	80	0079 427 80	
	85	0079 427 85	-
	90	0079 427 90	-
	95	0079 427 95	-
	100	0079 427 100	-
	105	0079 427 105	-
	110	0079 427 110	-
	115	0079 427 115	-
	120	0079 427 120	-
	125	0079 427 125	-
	130	0079 427 130	-
1407	135	0079 427 135	-
M27	140	0079 427 140	-
	145	0079 427 145	-
	150	0079 427 150	10/1
	155	0079 427 155	
	160	0079 427 160	-
	165	0079 427 165	-
	170	0079 427 170	-
	175	0079 427 175	-
	180	0079 427 180 0079 427 190	-
	190	0079 427 190	-
	200	0079 427 200	-
	210	0079 427 210	-
	220	0079 427 220	-
	230		-
	240	0079 427 240	-
	250	0079 427 250	-
	260	0079 427 260 0079 430 70	
	70	0079 430 70	-
	75	0079 430 75	-
M30	80	0079 430 80	10/1
	85		-
	90	0079 430 90 0079 430 95	-
	75	00/7 430 93	

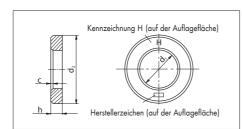
GewØ Länge I Stahl 10.9 V ArtNr. Stahl 10.9 No.	
100 0079 430 100	
105 0079 430 105	
110 0079 430 110	
115 0079 430 115 10	0/1
120 0079 430 120	
125 0079 430 125	
130 0079 430 130	
135 0079 430 135	
140 0079 430 140	
145 0079 430 145	
150 0079 430 150	
155 0079 430 155	
M30 160 0079 430 160	
165 0079 430 165	
170 0079 430 170	
175 0079 430 175	5/1
180 0079 430 180 190 0079 430 190	
200 0079 430 200	
210 0079 430 210	
220 0079 430 220	
230 0079 430 230	
240 0079 430 240	
250 0079 430 250	
260 0079 430 260	
85 0079 436 80	
90 0079 436 90	
95 0079 436 95	
100 0079 436 100	
105 0079 436 105	
110 0079 436 110	
115 0079 436 115	
120 0079 436 120	
125 0079 436 125 130 0079 436 130	
130 0079 436 130 135 0079 436 135	
140 0079 436 140	
145 0079 436 145	
	5/1
155 0079 436 155	ا ،
160 0079 436 160	
165 0079 436 165	
170 0079 436 170	
175 0079 436 175	
180 0079 436 180	
190 0079 436 190	
200 0079 436 200	
210 0079 436 210	
220 0079 436 220	
230 0079 436 230	
240 0079 436 240	
250 0079 436 250	

HV-GARNITUREN

für Gewinde-Ø d	Mutternhöhe m mm	Schlüsselweite s	ArtNr.	VE/St.
M12	10	22	0079 05 12	200 /1
M16	13	27	0079 05 16	200/1
M20	16	32	0079 05 20	100/1
M22	18	36	0079 05 22	50/1
M24	20	41	0079 05 24	50/1
M27	22	46	0079 05 27	25/1
M30	24	50	0079 05 30	25/1
M36	29	60	0079 05 36	15/1

nach DIN EN 14399-4

HV-Muttern mit großen Schlüsselweiten


Hochfeste vorspannbare Garnituren für Schraubenverbindungen im Metallbau.

- System HV
- k-Klasse K1
- Festigkeitsklasse 10
- Stahl feuerverzinkt
- MoS₂-geschmiert

HV-Muttern nach DIN EN 14399-4 (früher DIN 6915) sind für HV-Schrauben nach DIN EN 14399-4 (früher DIN 6914) bestimmt, die im Metallbau für gleitfeste Scher-/Leibungs- und Zugverbindungen verwendet werden.

HV-GARNITUREN

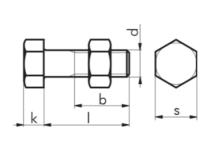
Innen-Ø	für GewØ	Außen-Ø	c min. mm	Scheiben- dicke h	ArtNr.	VE/St.
mm		mm		mm		
13	M12	24	1 4	3	0079 06 12	400/1
17	M16	30	1,6	4	0079 06 16	
21	M20	37			0079 06 20	200 /1
23	M22	39	2		0079 06 22	200/1
25	M24	44			0079 06 24	
28	M27	50		5	0079 06 27	100/1
31	M30	56	2,5	3	0079 06 30	100/1
37	M36	66		6	0079 06 36	50/1

nach DIN EN 14399-6

Flache Scheiben mit Fase

Hochfeste vorspannbare Garnituren für Schraubenverbindungen im Metallbau.

Härte 300 HV – 370 HV Stahl feuerverzinkt


Scheiben nach dieser Norm sind für HV-Garnituren nach DIN EN 14399-4 (früher DIN 6914 und 6915) bestimmt.

"Es sind nur komplette Garnituren (Schrauben, Muttern und Scheiben) eines Herstellers zu verwenden." (Auszug aus der DIN EN 1993-1-8/NA:2010-12)

Die Ausführung von Stahlbauten mit HV-Garnituren ist in der DIN EN 1090-2 und der DIN EN 1993-1-8/NA geregelt.

Sechskantschrauben

DIN 601 (ISO 4016) mit Mutter

Stahl 4.6 blank Stahl 4.6 verzinkt, blau passiviert

GewØ d	M5	M6	M8	M10	M12	M14	M16	M20	M24	M 27	M30	M36
b (bis 120) mr	n 16	18	22	26	30	38	38	46	54	60	66	78
b (130 bis 200) mr	n –	_	28	32	36	_	44	52	60	66	72	84
b (über 200) mr	n –	_	_	45	49	_	57	65	73	79	85	97
k mr	n 3,5	4	5,3	6,4	7,5	8,8	10	12,5	15	17	18,7	22,5
s mr	n 8	10	13	17	19	22	24	30	36	41	46	55

GewØ	1	Stahl 4.6		VE/St.	Stahl 4.6 v	Z.,	VE/St.	
d		blank			blau pass.			
	mm	ArtNr.			ArtNr.			
	10				0078 5	10		
	16				00785	16		
	20				00785	20		
	25				00785	25		
	30				00785	30	200	
M 5	35				00785	35	200	
	40				00785	40		
	45				00785	45		
	50				00785	50		
	60				00785	60		
	70				00785	70	100	
	10	0077 6	10		00786	10	200	
	12	0077 6	12					
	16	0077 6	16		00786	16	200	
	18	0077 6	18	500				
	20	0077 6	20	300	00786	20	200	
	22	0077 6	22					
	25	0077 6	25		00786	25	200	
	30	0077 6	30		00786	30		
	35	0077 6	35		00786	35		
M 6	40	0077 6	40		00786	40		
741.0	45	0077 6	45	200	00786	45		
	50	0077 6	50	200	00786	50	100	
	55	0077 6	55		00786	55		
	60	0077 6	60		00786	60		
	70				00786	70		
	80				00786	80		
	90				00786	90		
	100				00786	100		
	110				00786	110	50	
	120				00786	120		
	16	0077 8	16		00788	16	200	
	18	0077 8	18					
	20	0077 8	20		00788	20	200	
	22	00778	22					
	25	0077 8	25		00788	25		
	30	0077 8	30		00788	30		
	35	00778	35		00788	35		
M 8	40	0077 8	40	200	00788	40	100	
141.0	45	0077 8	45		00788	45	'''	
	50	0077 8	50		00788	50		
	55	0077 8	55		00788	55		
	60	0077 8	60		00788	60		
	65	0077 8	65		00788	65	4	
	70	0077 8	70		00788	70	50	
	80	0077 8	80		00788	80		
	90	0077 8	90	100	00788	90		

GewØ	I	Stahl 4.6		VE/St.	Stahl 4.6 vz	<u>z</u> .,	VE/St.	
d		blank ArtNr.			blau pass. ArtNr.			
	mm		100			100		
	100	0077 8	100	100	00788	100		
	110	0077 8	110	100	00788	110	50	
140	120	00778	120		00788	120		
M 8	140	-			00788	140		
	160	-			00788	160	25	
	180	-			00788	180		
	200	0077.10	17		00788	200	100	
	16	0077 10	16	<u> </u>	0078 10	16	100	
	18	0077 10	18	-	0070 10	00	100	
	20	0077 10	20	200	0078 10	20	100	
	22	0077 10	22	_	007010	0.5		
	25	0077 10	25	-	0078 10	25		
	30	0077 10	30		0078 10	30		
	35	0077 10	35	-	0078 10	35	50/100	
	40	0077 10	40	50	0078 10	40		
	45	0077 10	45	-	0078 10	45		
	50	0077 10	50		0078 10	50		
	55	0077.10	70		0078 10	55		
	60	0077 10	60	50	0078 10 0078 10	60		
	65	0077 10	65	100		65	05/50	
1110	70	0077 10	70		0078 10	70	25/50	
M 10	80	0077 10	80	50	0078 10	80	25	
	90	0077 10	90	100	0078 10	90	25	
	100	0077 10	100		0078 10	100		
	110 120	0077 10	110 120	_	0078 10	110	25/50	
	130	0077 10 0077 10	130	E0	0078 10 0078 10	120 130	25/50	
	140	0077 10		50	0078 10		-	
	150		140 150		0078 10	140 150		
	160	0077 10	150			160	50	
	180	+			0078 10 0078 10	180	50	
	200	1			0078 10	200	25	
	220	+			0078 10	220	50	
	240	1			0078 10	240	30	
	260	1			0078 10	260	1/25	
	280	+			0078 10	280	1/23	
	200				0078 10	20		
	25	1			0078 12	25		
	30	0077 12	30	50	0078 12	30	50	
	35	00// 12	30	30	0078 12	35		
	40	0077 12	40		0078 12	40		
M 12	45	0077 12	45	50	0078 12	45	25/50	
191 IZ	50	0077 12	50		0078 12	50	25/50	
	55	0077 12	55	25	0078 12	55	25	
	60	0077 12	60	23	0078 12	60	25/50	
	65	3077 12	00		0078 12	65		
	70	0077 12	70	25	0078 12	70	25	
	70	00// 12	70	23	307012	70		

GewØ		Stahl 4.6		VE/St.	Stahl 4.6 vz		VE/St.	
d d	'			V L / O1.		••,	V L/ OI.	
a		blank			blau pass.			
	mm	ArtNr.			ArtNr.			
	7.5				0070 10	75		
	75	1			0078 12	75		
	80				0078 12	80	50	
	90	1			0078 12	00		
		1				90		
	100				0078 12	100		
		0077 10	110					
	110	0077 12	110	[0078 12	110		
	120	0077 12	120		0078 12	120		
							0.5	
	130	0077 12	130	50	0078 12	130	25	
	140	0077 12	140		0078 12	140		
				1				
	150	0077 12	150		0078 12	150		
	160	0077 12	160	_	0078 12	160		
				25				
	180	0077 12	180		0078 12	180		
	190				0078 12	190		
	200	0077 12	200	25	0078 12			
		0077 12	200	25		200		
	220	0077 12	220		0078 12	220		
				1/25				
	240	0077 12	240		0078 12	240		
1	260	0077 12	260		0078 12	260		
AA 10				25			1/05	
M 12	280	0077 12	280	25	0078 12	280	1/25	
1	300	0077 12	300		0078 12	300		
1								
1	320	1			0078 12	320		
1	340				0078 12	340		
		1						
	360	1			0078 12	360		
	380				0078 12	380		
		1			0078 12	400		
	400	1						
	420				0078 12	420		
	440	1			0078 12	440		
		-						
	460				0078 12	460		
	480]			0078 12	480		
		-						
	500				0078 12	500	1	
	520]			0078 12	520	1	
		-						
	540				0078 12	540		
	560				0078 12	560		
		-						
	580				0078 12	580		
	600				0078 12	600		
	t							
	30	_			0078 14	30		
	35				0078 14	35		
	40	1			0078 14	40		
1171	50				0078 14	50	50	
M 14	60	1			0078 14	60		
		-						
	70				0078 14	70		
	80	1			0078 14	80		
		-						
	100				0078 14	100	25	
	25	0077 16	25					
1	_				0050 - 1	0.0		
1	30	0077 16	30	50	0078 16	30		
	35	0077 16	35		0078 16	35	50	
							50	
	40	0077 16	40		0078 16	40		
	45	0077 16	45		0078 16	45	25	
				0.5			20	
	50	0077 16	50	25	0078 16	50		
	55	0077 16	55		0078 16	55	50	
				1				
	60	0077 16	60		0078 16	60		
	65	0077 16	65	1/25	0078 16	65		
1	70	0077 16	70	25	0078 16	70		
1	75				0078 16	75	1/25	
1		007717	9.0					
M 16	80	0077 16	80	1/25	0078 16	80		
l	90	0077 16	90	1, 25	0078 16	90		
1	100				0078 16	100	25	
1							23	
1	110	0077 16	110	25	0078 16	110		
1	120	0077 16	120	1/25	0078 16	120		
1				1723				
1	130	0077 16	130		0078 16	130		
	140	0077 16	140		0078 16	140		
							1/25	
	150	0077 16	150		0078 16	150		
	160	0077 16	160		0078 16	160		
1				1			-	
_	180	0077 16	180	25	0078 16	180		
	200	0077 16	200	23	0078 16	200		
1				1				
	220	0077 16	220		0078 16	220	1/10	
	240	0077 16	240		0078 16	240	17.10	

		0. 1147		\/F /C:	0. 1147		\/F /C:
GewØ		Stahl 4.6		VE/St.	Stahl 4.6 vz	- .,	VE/St.
d		blank			blau pass.		
	mm	ArtNr.			ArtNr.		
	260	0077 16	260		0078 16	260	1/05
	280	0077 16	280	25	0078 16	280	1/25
	300	0077 16	300		0078 16	300	
	320	0022.10			0078 16	320	
	340	1					
		-			0078 16	340	1/10
	360				0078 16	360	
	380]			0078 16	380	
	400				0078 16	400	
	420]			0078 16	420	
M 16	440	1			0078 16	440	
	460	1			0078 16	460	
		-					
	480	-			0078 16	480	
	500				0078 16	500	1
	520				0078 16	520	
	540				0078 16	540	
	560	1			0078 16	560	
	580	1			0078 16	580	
	600	1			0078 16	600	
		0077.00	25				
	35	0077 20	35		0078 20	35	
	40	0077 20	40	25	0078 20	40	
	45	0077 20	45	-0	0078 20	45	1/25
	50	0077 20	50		0078 20	50	
	55				0078 20	55	
	60	0077 20	60		0078 20	60	25
	65	0077 20	65		0078 20	65	1/25
	70	0077 20	70		0078 20	70	25
							23
	75	0077 20	75	0.5	0078 20	75	
	80	0077 20	80	25	0078 20	80	
	85				0078 20	85	
	90	0077 20	90		0078 20	90	1/25
	100	0077 20	100		0078 20	100	1/25
	110	0077 20	110		0078 20	110	
	120	0077 20	120	_	0078 20	120	
	130	0077 20	130	1/10	0078 20	130	
	140	0077 20	140	25	0078 20	140	1/10
	150	0077 20				150	1/25
			150	1/10	0078 20		1/23
	160	0077 20	160	10	0078 20	160	
	180	0077 20	180	1/10	0078 20	180	
M 20	200	0077 20	200		0078 20	200	
741 20	220	0077 20	220	10/20	0078 20	220	
	240				0078 20	240	
	260]			0078 20	260	
	280				0078 20	280	1/10
	300	1			0078 20	300	'' '
	320	1			0078 20	320	
		1					
	340	-			0078 20	340	
	360				0078 20	360	
	380	1			0078 20	380	
	400]			0078 20	400	
	420				0078 20	420	
	440]			0078 20	440	
	460	1			0078 20	460	
	480	1			0078 20	480	
		1					
	500	-			0078 20	500	1
	520	-			0078 20	520	
	540	1			0078 20	540	
	560]			0078 20	560	
	580				0078 20	580	
	600	1			0078 20	600	
	40	0077 24	40		,		
	45	0077 24	45	-	0078 24	45	
				10			10
M 24	50	0077 24	50	-	0078 24	50	10
	55	0077 24	55	0.5	0078 24	55	
	60	0077 24	60	25	0078 24	60	25
	65	0077 24	65	10			

GewØ		Stahl 4.6		VE/St.	Stahl 4.6 vz		VE/St.	
d	'	blank		VE/31.	blau pass.	''	V E / Sī.	
u	mm	ArtNr.			ArtNr.			
	70	0077 24	70	0.5	0078 24	70	7 (05	
	80	0077 24	80	25	0078 24	80	1/25	
	90	0077 24	90		0078 24	90	1/10	
	100	0077 24	100]	0078 24	100	1/10	
	110	0077 24	110					
	120	0077 24	120		0078 24	120	1/10	
	130	0077 24	130					
	140	0077 24	140	10	0078 24	140	1/10	
	150	0077 24	150					
	160	0077 24	160		0078 24	160		
	180	0077 24	180		0078 24	180		
	200	0077 24	200		0078 24	200		
	220	0077 24	220		0078 24	220	1/10	
	240				0078 24	240	1710	
M 24	260				0078 24	260		
741 24	280				0078 24	280		
	300				0078 24	300		
	320				0078 24	320		
	340				0078 24	340	1	
	360				0078 24	360		
	380				0078 24	380		
	400				0078 24	400		
	420				0078 24	420		
	440				0078 24	440		
	460					460		
	60	0077 27	60		0078 27	60		
	65	0077 27	65		0078 27	65		
	70	0077 27	70		0078 27	70		
	80	0077 27	80		0078 27	80		
	90	0077 27	90		0078 27	90		
	100	0077 27	100		0078 27	100		
	110	0077 27	110		0078 27	110		
	120	0077 27	120	10	0078 27	120		
	130	0077 27	130		0078 27	130		
M 27	140	0077 27	140		0078 27	140	10	
	150	0077 27	150]	0078 27	150		
	160	0077 27	160		0078 27	160		
	180	0077 27	180		0078 27	180		
	200	0077 27	200]	0078 27	200		
	220	0077 27	220		0078 27	220		
	240				0078 27	240		
	260				0078 27	260		
	280				0078 27	280		
	300				0078 27	300		

GewØ	l i	Stahl 4.6		VE/St.	Stahl 4.6 vz		VE/St.
d d	'	blank		V L / 31.	blau pass.	•,	V L / 31.
"	mm	ArtNr.			ArtNr.		
	55	0077 30	55		0078 30	55	
	60	0077 30	60	-	0078 30	60	
	65	0077 30	65	1	0078 30	65	
	70	0077 30	70	1	0078 30	70	
	80	0077 30	80	1	0078 30	80	
	90	0077 30	90		0078 30	90	
	100	0077 30	100		0078 30	100	
	110	0077 30	110	1,0	0078 30	110	
	120	0077 30	120	10	0078 30	120	
14.20	130	0077 30	130		0078 30	130	1.0
M 30	140	0077 30	140		0078 30	140	10
	150	0077 30	150	1	0078 30	150	
	160	0077 30	160]	0078 30	160	
	180	0077 30	180		0078 30	180	
	200	0077 30	200]	0078 30	200	
	220	0077 30	220]	0078 30	220	
	240				0078 30	240	
	260				0078 30	260	
	280				0078 30	280	
	300				0078 30	300	
	80	0077 36	80		0078 36	80	
	90	0077 36	90		0078 36	90	
	100	0077 36	100		0078 36	100	
	110	0077 36	110		0078 36	110	
	120	0077 36	120		0078 36	120	
	130	0077 36	130	1	0078 36	130	
	140	0077 36	140] '	0078 36	140	
M 36	150	0077 36	150		0078 36	150	1
141.30	160	0077 36	160		0078 36	160	'
	180	0077 36	180]	0078 36	180	
	200	0077 36	200		0078 36	200	
	220	0077 36	220		0078 36	220	
	240				0078 36	240	
	260				0078 36	260	
	280				0078 36	280	
	300				0078 36	300	

BEMESSUNGSWERTE FÜR WÜRTH DÜBEL GEMÄSS ZULASSUNGEN UND ETA 14/0274 SOWIE AUSGEWÄHLTEN TEMPERATURBEREICHEN

Beispielhafte Dübeltypen	Effektive veranker- ungstiefe h _{ef}	Durchgangs- loch im Anbauteil d _f	Gerissener Beton bzw. Betongüte	Bemessungswert des Widerstandes F _{B,Rd} ¹⁾ mit minimalen Randabstand c _{min}		Bemessungswert des Widerstandes F _{B,Rd} ¹⁾ mit charakteristischem Randabstand c _{cr,N}	
	[mm]	[mm]		c _{min} [mm]	F _{B.RD} [kN]	c _{cr,N} [mm]	F _{B.RD} [kN]
Betonschraube W-BS ø14/ h _{nom1}	58	18	C20/25	50	7,28	87	10,6
Betonschraube W-BS ø14/ h _{nom2}	79	18	C20/25	70	11,7	118,5	16,85
Betonschraube W-BS ø14/ h _{nom3}	92	18	C20/25	70	13,6	138	21,1
Fixanker W-FAZ/S M16	85	18	C20/25	60	11,6	127,5	16,7
Fixanker W-FAZ/S M20	100	22	C20/25	95	17,4	150	24
Fixanker W-FAZ/A4 M16	85	18	C20/25	60	11,6	127,5	16,7
Fixanker W-FAZ/A4 M20	100	22	C20/25	95	17,4	150	24
Injektionssystem W-VIZ/S M16-90	90	1 <i>7</i> , 18	C20/25	50	11,3	135	20,4
Injektionssystem W-VIZ/S M16-105	105	1 <i>7</i> , 18	C20/25	50	13,5	157	25,7
Injektionssystem W-VIZ/S M16-125	125	1 <i>7</i> , 18	C20/25	60	17,6	187	33,5
Injektionssystem W-VIZ/S M16-145	145	1 <i>7</i> , 18	C20/25	60	20,9	217	41,7
Injektionssystem W-VIZ/S M20-115	115	21, 22	C20/25	80	18,2	172	29,4
Injektionssystem W-VIZ/A4 M16-90	90	1 <i>7</i> , 18	C20/25	50	11,3	135	20,4
Injektionssystem W-VIZ/A4 M16-105	105	1 <i>7</i> , 18	C20/25	50	13,5	157	25,7
Injektionssystem W-VIZ/A4 M16-125	125	1 <i>7</i> , 18	C20/25	60	17,6	187	33,5
Injektionssystem W-VIZ/A4 M16-145	145	1 <i>7</i> , 18	C20/25	60	20,9	217	41,7
Injektionssystem W-VIZ/A4 M20-115	115	21, 22	C20/25	80	18,2	172	29,4
Injektionssystem WIT-VM 250 M16-80	80	1 <i>7</i> , 18	C20/25	80	9,2	160	12,2
Injektionssystem WIT-VM 250 M16-320	30	1 <i>7</i> , 18	C20/25	80	27,9	640	49,1

Berechnungsgrundlagen:

Betonschraube W-BS 14

Fixanker W-FAZ

ETA-16/0043

ETA-99/0011

Injektionssystem W-VIZ/S ABZ Z-21.3-1909
Injektionssystem WIT-VM 250 ETA-12/0164

Teilsicherheitsbeiwert: $\gamma_F = 1,5$ (veränderliche Lasten)

W-VIZ: Maximale Langzeittemperatur (Untergrund, Umgebung) 50°C - W-VIZ

Maximale Kurzzeittemperatur (Untergrund, Umgebung) 80°C - W-VIZ

WIT-VM 250: Maximale Langzeittemperatur (Untergrund, Umgebung) 24°C – WIT-VM 250

Maximale Kurzzeittemperatur (Untergrund, Umgebung) 40°C - WIT-VM 250

Hinweis: Es sind die Vorgaben der Zulassungen zu beachten z.B. Mindestbauteildicke, Achsabstand, ...

1) Wird die zulässige Last benötigt, dann gilt folgende Gleichung $F_{zul} = F_{b,Rd}/Teilsicherheitsbeiwert 1,4$

HINWEIS: Es handelt sich hier um Planungshilfen. Die Werte sind durch autorisierte Personen im Projektfall zu bemessen.

WÜRTH HOLZVERBINDER FÜR DAS HOLZ UND BAUHANDWERK

Adolf Würth GmbH & Co.Kr D-74650 Künzelsau T +049 7940 15-0 F +49 7940 15-1000 info@wuerth.de

by Adolf Wuerth GmbH & Co. KG Printed in Germany Alle Rechte vorbehalten Verantwortlich für den Inhalt Abt. PCV Udo Cera, Abt.

Wir behalten uns das Recht vor, Produktveränderungen, die aus unserer Sicht einer Qualitätsverbesserung dienen, auch ohne Vorankündigung oder Miteilung jederzeit durchzuführen. Abbildungen können Beispielabbildungen sein, die im Erscheinungsbild von der gelieferten Ware abweichen können. Irrtürmer behalten wir uns vor. Für

Ware abweichen können. Irrtürmer behalten wir uns vor. Für Druckfehler übernehmen wir keine Haftung. Es gelten die allgemeinen Geschäftsbedingungen.

